Deteksi Covid-19 pada Citra Sinar-X Dada Menggunakan Deep Learning yang Efisien

Penulis

  • Novanto Yudistira Universitas Brawijaya
  • Agus Wahyu Widodo Universitas Brawijaya
  • Bayu Rahayudi Universitas Brawijaya

DOI:

https://doi.org/10.25126/jtiik.2020763651

Abstrak

Deteksi Covid-19 merupakan tahapan penting untuk mengenali secara dini pasien terduga Covid-19 sehingga dapat dilakukan langkah lanjutan. Salah satu cara pendeteksian adalah melalui citra sinar-x paru. Namun demikian, selain dibutuhkan suatu model algoritma yang dapat menghasilkan akurasi tinggi, komputasi yang ringan merupakan hal yang dibutuhkan sehingga dapat diaplikasikan dalam alat pendeteksi. Model deep CNN dapat melakukan deteksi dengan akurat namun cenderung memerlukan penggunaan memori yang besar. CNN dengan parameter yang lebih sedikit dapat menghemat storage maupun penggunaan memori sehingga dapat berproses secara real time baik berupa alat pendeteksi maupun sistem pengambilan keputusan via cloud. Selain itu, CNN dengan parameter yang lebih kecil juga dapat untuk diaplikasikan pada FPGA dan perangkat keras lainnya yang mempunyai kapasitas memori terbatas. Untuk menghasilkan deteksi COVID-19 pada citra sinar-x paru yang akurat namun komputasinya juga ringan, kami mengusulkan arsitektur CNN kecil namun handal dengan menggunakan teknik pertukaran channel yang disebut ShuffleNet. Dalam penelitian ini, kami menguji dan membandingkan kemampuan ShuffleNet, EfficientNet, dan ResNet50 karena mempunyai jumlah parameter yang lebih kecil dibanding CNN pada umumnya seperti VGGNet atau FullConv yang menggunakan lapisan konvolusi secara penuh namun mempunyai kemampuan deteksi yang mumpuni. Kami menggunakan 1125 citra sinar-x dan mencapai akurasi 86.93 % dengan jumlah parameter model yang 18.55 kali lebih sedikit dari EfficientNet dan 22.36 kali lebih sedikit dari ResNet50 untuk mendeteksi 3 kategori yaitu Covid-19, Pneumonia, dan normal melalui uji 5-fold crossvalidation. Memori yang diperlukan oleh masing-masing arsitektur CNN tersebut untuk melakukan sekali deteksi berhubungan secara linier dengan jumlah parameternya dimana ShuffleNet hanya memerlukan memori GPU sebesar 0.646 GB atau 0.43 kali dari ResNet50,  0.2 kali dari EfficientNet, dan 0.53 kali dari FullConv. Lebih lanjut, ShuffleNet melakukan deteksi paling cepat yaitu sebesar 0.0027 detik.


Abstract

Covid-19 detection is an important step in identifying early patients with suspected Covid-19 so that further steps can be taken. One way of detection is through pulmonary x-ray images. However, besides requiring an algorithm model that can produce high accuracy, lightweight computation is needed so that it can be applied in a detector. The deep CNN model can detect accurately but tends to require large memory usage. CNN with fewer parameters can save storage and memory usage so that it can process in real time both in the form of detection devices and decision-making systems via the cloud. In addition, CNN with smaller parameters can also be applied to FPGA and other hardware that have limited memory capacity. To produce accurate COVID-19 detection on x-ray images with lightweight computation, we propose a small but reliable CNN architecture using a channel shuffle technique called ShuffleNet. In this study, we tested and compared the capabilities of ShuffleNet, EfficientNet, and ResNet because they have a smaller number of parameters than usual deep CNN, such as VGGNet or FullConv which uses a full convolution layers with a robust detection capability. We used 1125 x-ray images and achieved an accuracy of 86.93% with a number of model parameters of 18.55 times less than EfficientNet and 22.36 times less than ResNet50 to detect 3 categories namely Covid-19, Pneumonia, and normal through the 5-fold cross validation. The memory required by each CNN architecture to perform one detection is linearly related to the number of parameters where ShuffleNet only requires GPU memory of 0.646 GB or 0.43 times that of ResNet50, 0.2 times of EfficientNet, and 0.53 times of FullConv. Furthermore, ShuffleNet performs the fastest detection at 0.0027 seconds.


Downloads

Download data is not yet available.

Referensi

A. BERNHEIM, X. MEI, et al. (2020). Chest CT findings in coronavirus disease-19 (COVID- 19): relationship to duration of infection. Radiology, https://doi.org/10.1148/radiol. 2020200463. In press.

A. NARIN, C. KAYA, Z. PAMUK. (2020). Automatic Detection of Coronavirus Disease (COVID- 19) Using X-Ray Images and Deep Convolutional Neural Networks. arXiv preprint arXiv:2003.10849.

C. HUANG, Y. WANG, et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395 (10223), p.497–506.

DENG, JIA, et al. (2009). Imagenet: A large-scale hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition.

E.E.D. HEMDAN, M.A. SHOUMAN, M.E. KARAR. (2020). COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray Images. arXiv preprint arXiv:2003.11055.

F. PAN, T. YE, et al. (2020). Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology, https://doi. org/10.1148/radiol.2020200370. In press.

F. WU, S. ZHAO, B. YU, et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579 (7798), p.265–269.

H.E, KAIMING, et al. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition.

H. SHI, X. HAN, et al. (2020). Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis. 24 (4), p.425–434.

IOFFE, SERGEY, dan CHRISTIAN SZEGEDY. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

J.F.W. CHAN, S. YUAN, et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395 (10223), p.514–523.

J.P. COHEN. (2020). COVID-19 Image Data Collection. https://github.com/ieee8023/ COVID-chestxray-dataset.

L. LAN, D. XU, G. YE, C. XIA, S. WANG, Y. LI, H. XU. (2020). Positive RT-PCR test results in patients recovered from COVID-19. Jama 323 (15), p.1502–1503.

L. WANG dan A. WONG. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images. arXiv preprint arXiv:2003.09871.

M.A, NINGNING, et al. (2018). Shufflenet v2: Practical guidelines for efficient cnn architecture design. Proceedings of the European Conference on Computer Vision (ECCV).

M.L. HOLSHUE, C. DEBOLT, et al. (2020). First case of 2019 novel coronavirus in the United States. N. Engl. J. Med. 328, p.929–936.

NAIR, VINOD, dan GEOFFREY E. HINTON. (2010). Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th international conference on machine learning (ICML-10).

P.K. SETHY dan S.K. BEHERA. (2020). Detection of Coronavirus Disease (COVID-19) Based on Deep Features.

S.H. YOON, K.H. LEE, et al. (2020). Chest radiographic and CT findings of the 2019 novel coronavirus disease (COVID-19): analysis of nine patients treated in Korea. Korean J. Radiol. 21 (4), p.494–500.

S. WANG, B. KANG, J. MA, X. ZENG, M. XIAO, J. GUO, B. XU. (2020). A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). medRxiv.

TAN, MINGXING, dan QUOC V. LE. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946.

T. SINGHAL. 2020. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 87, p.281–286.

W. KONG dan P.P. AGARWAL. (2020). Chest imaging appearance of COVID-19 infection. Radiology: Cardiothoracic Imaging 2 (1), e200028.

WORLD HEALTH ORGANIZATION. (2020). Pneumonia of Unknown Cause–China. Emergencies Preparedness, Response, Disease Outbreak News, World Health Organization (WHO).

W. ZHAO, Z. ZHONG, X. XIE, Q. YU, J. LIU. (2020). Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: a multicenter study. Am. J. Roentgenol. 214 (5), p.1072–1077.

X. WANG, Y. PENG, L. LU, Z. LU, M. BAGHERI, R.M. SUMMERS. (2017). Chestx-ray8: hospitalscale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2097–2106.

Y. LI dan L. XIA. (2020). Coronavirus Disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am. J. Roentgenol., p.1–7.

Y. SONG, S. ZHENG, L. LI, X. ZHANG, X. ZHANG, Z. HUANG, Y. CHONG. (2020). Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. medRxiv.

ZHANG, RENYI, et al. (2020). Identifying airborne transmission as the dominant route for the spread of COVID-19. Proceedings of the National Academy of Sciences.

ZHANG, XIANGYU, et al. (2018). Shufflenet: An extremely efficient convolutional neural network for mobile devices. Proceedings of the IEEE conference on computer vision and pattern recognition.

Z. WU dan J.M. MCGOOGAN. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. Jama 323 (13), p.1239–1242.

Z.Y. ZU, M.D. JIANG, P.P. XU, W. CHEN, Q.Q. NI, G.M. LU, L.J. ZHANG. (2020). Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology, https://doi.org/10.1148/ radiol.2020200490. In press.

Diterbitkan

02-12-2020

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Deteksi Covid-19 pada Citra Sinar-X Dada Menggunakan Deep Learning yang Efisien. (2020). Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(6), 1289-1296. https://doi.org/10.25126/jtiik.2020763651