Pengenalan Emosi Berdasarkan Suara Menggunakan Algoritma HMM
Penulis
Barlian Henryranu Prasetio, Wijaya Kurniawan, Mochammad Hannats Hanafi Ichsan Download PDFAbstrak
Abstrak
Penelitian ini bertujuan mengenali emosi seseorang melalui ucapan menggunakan algoritma HMM. Sistem dibangun dapat mengenali 3 jenis emosi yaitu marah, bahagia dan netral. Fitur yang digunakan dalam sistem ini adalah pitch, energi dan formant. Database yang digunakan adalah suara dari rekaman film. Dari hasil obeservasi probabilitas emosi marah sebesar 0.196, bahagia 0.254 dan netral 0.045. Sistem memiliki tingkat akurasi rata-rata sebesar 86.66%. Rata waktu eksekusi sistem dalam mendeteksi dan mengklasifikasikan emosi sebesar 21.6ms.
Kata kunci: suara, emosi, HMM, klasifikasi
Abstract
This research aims to recognize human emotions through voice using HMM algorithm. The system can confirm three types of emotions: anger, happiness and neutrality. The features used in this system are pitch, energy and formant. From the results, the emotional probability of angry is 0.196, happy is 0.254 and neutral is 0.045. Base on testing result, the system has an average accuracy of 86.66% and average execution time of the system in detecting and classifying emotions of 21.6ms.
Keywords: voice, emotion, HMM, classification
Teks Lengkap:
PDF (English)Referensi
B. INGALE, D. S. CHAUDHARI, 2012, Speech Emotion Recognition Using Hidden Markov Model And Support Vector Machine. International Journal of Advanced Engineering Research and Studies (IJAERS), Vol. I, Issue 3, April-June, 316-318.
A. NOGUEIRAS, A. MORENO, A. BONAFONTE, J. B. MARINO, 2001, Speech emotion recognition using hidden Markov models, EUROSPEECH 2001 Scandinavia, 7th European Conference on Speech Communication and Technology, 2nd INTERSPEECH Event, Aalborg, Denmark, pp: 2679-2682
B. HEUFT, T. PORTELE, AND M. RAUTH, 1996, Emotions in time domain synthesis, inProc. of ICSLP, Philadelphia, pp. 1974–1977
B. SCHULLER, G. RIGOLL, M. LANG, 2003, Hidden Markov model-based Speech emotion recognition, Proceedings of the IEEE ICASSP Conference on Acoustics, Speech and Signal Processing, vol. 2, pp. 1-4.
D. VERVERIDIS, C. KOTROPOULOS, AND I. PITAS, 2004, Automatic emotional speech classification, in Proc. 2004 IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol.1, pp. 593-596, Montreal, May.
F.YU, E.CHANG, Y.XU, H.SHUM, 2001, Emotion detection from speech to enrich multimedia content, Lecture Notes in Computer Science, Vol. 2195, 550-557.
N.H. FRIEDA, 1993, Moods, Emotion Episodes and Emotions, New York: Guilford Press, hal. 381-403.
T. L. PAO, W. Y. LIAO, Y. T. CHEN, J. H. YEH, 2008, Comparison of Several Classifiers for Emotion Recognition from Noisy Mandarin Speech, Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Vol. 1, pp: 23-26
Y. PAN, PEIPEI SHEN AND LIPING SHEN, 2012, Speech Emotion Recognition Using Support Vector Machine, International Journal of Smart Home, Vol. 6, No. 2, April.
DOI: http://dx.doi.org/10.25126/jtiik.201743339