Optimasi DF Berbasis Posisi Jendela Menggunakan Estetika Asimetris


Yose Rizal, Imam Robandi, Eko Mulyanto Yuniarno


Jendela merupakan elemen arsitektur yang berfungsi memasukan pencahayaan alami dari luar kedalam bangunan. Distribusi pencahayaan siang yang merata masuk kedalam ruangan dapat meminimalkan penggunaan pencahayaan buatan. Penelitian ini dilakukan untuk mencari optimasi posisi jendela dengan pendekatan kepada distribusi jarak daylight factor (DF) dan estetika komposisi spasial. Analisis dilakukkan berdasarkan kualitatif distibusi DF pada ruangan terhadap posisi bukaan jendela secara estetika komposisional beradasarkan grafik teori kecocokan represetasional. Tahap fitting dan normalisasi pada nilai daylight factor dan estetika asimetri dari teori kecocokan represetasional merupakan langkah awal untuk mendapatakan optimasi nilai faktor yang nantinya akan diberikan suatu nilai faktor bobot ( ) untuk kedua variabel. Hasil studi di dapat  posisi jendela paling optimal berada pada posisi jarak 23% dari lebar bidang dinding bukaan jendela terhadap sisi jendela bagian dalam, dimana nilai faktor bobot  = 0,5. Optimasi dengan menggunakan nilai  dapat digunakan arsitek untuk menentukkan distribusi DF, estetika asimetri atau bahkan keduanya.



The window is an architectural element that functions to incorporate natural lighting from outside into the building. Even daylight distribution into the room can minimize the use of artificial lighting. This research was conducted to find window position optimization by approaching the daylight factor (DF) distance distribution and spatial composition aesthetics. The analysis was carried out based on the qualitative distribution of DF in the room to the position of the window opening aesthetically compositional based on a graph of the theory of repetational compatibility. The fitting and normalization phase of DF values and the asymmetry aesthetics of the repetational match theory are the first step to get an optimization of the factor values which will be given a weight factor value (α) for both variables. The results of the study in the most optimal window position can be located at a distance of 23% from the width of the window opening wall area to the inner side of the window, where the weight factor value α = 0.5. Optimization using the  can be used by architects to determine the distribution of DF, asymmetry aesthetics or even both.

Teks Lengkap:



ACOSTA, IGNACIO ET AL. 2015. “Analysis of the Accuracy of the Sky Component Calculation in Daylighting Simulation Programs.” Solar Energy 119: 54–67.

———. 2018. “Energy Efficiency and Lighting Design in Courtyards and Atriums: A Predictive Method for Daylight Factors.” Applied Energy 211(February): 1216–28.

ALMSSAD, ASAAD, AND AMJAD ALMUSAED. 2014. “Efficient Daylighting Approach by Means of Light-Shelve Device Adequate for Habitat Program in Aarhus City.” International Journal of Smart Grid and Clean Energy 3(4): 441–53.


ARVIND KRISHAN, NICK BAKER, SIMON YANNAS, Szokolay S.V. 2001. Climate Responsive Architecture; A Design Handbook for Energy Efficient Building. New Delhi: Tata McGrawHill Publishing Co.Ltd.

BADAN SNI 2001. 2001. Sni 03-6575-2001 Tata Cara Perancangan Sistem Pencahayaan Buatan Pada Bangunan Gedung . ed. BSN. Departemen Pemukiman dan Prasarana Wilayah.

BELLIA, LAURA, AND FRANCESCA FRAGLIASSO. 2015. Evaluation of Daylight Availability for Energy Savings. Journal of Daylighting 2: 12–20.

Brotas, Luisa, and Mike Wilson. 2008. “The Average Total Daylight Factor.” Light and Engineering 16(2): 52–57.

CODE, NATIONAL ELECTRIC, ILLUMINATING ENGINEERING SOCIETY, International Electrotechnical Commission, and Australian Standard. 2001. “Tata Cara Perancangan Sistem Pencahayaan Buatan Pada Bangunan Gedung .Sni 03-6575-2001: 1–32.

DÍAZ-VILARIÑO, L., S. LAGÜELA, J. ARMESTO, AND P. ARIAS. 2014. Indoor Daylight Simulation Performed on Automatically Generated As-Built 3D Models. Energy and Buildings 68(PARTA): 54–62.

GAGO, E. J., T. MUNEER, M. KNEZ, AND H. KÖSTER. 2015. “Natural Light Controls and Guides in Buildings. Energy Saving for Electrical Lighting, Reduction of Cooling Load.” Renewable and Sustainable Energy Reviews 41: 1–13.


GARDNER, JONATHAN SAMMARTINO. 2011. Aesthetics of Spatial Composition: Facing, Position, and Context, and the Theory of Representational Fit. In A Dissertation Submitted for the Degree of Doctor of Philosophy in University of California, Berkeley, Berkeley, 91.

HAŞIM ALTAN, AND JITKA MOHELNIKOVA. 2015.Windows Influence on Room Daylighting in Residential Buildings. Journal of Civil Engineering and Architecture 9(3): 291–99.

JAMALUDIN ADI, AINURZAMAN ET AL. 2015. “The Dynamics of Daylighting at a Residential College Buildings with the Internal Courtyard Arrangement.” International Journal of Architectural Research Jamaludin et al. Archnet-IJAR International Journal of Architectural Research 9(3): 148–65.

KENSEK, KAREN, AND JY SUK. 2011. “Daylight Factor (Overcast Sky) versus Daylight Availability (Clear Sky) in Computer-Based Daylighting Simulations.” Journal of Creative Sustainable Architecture & Built. 1: 3–14. http://www.sersc.org/journals/CSABE/vol1/2.pdf.

KOUSALYADEVI, G, AND G LAVANYA. 2019. “Optimal Investigation of Daylighting and Energy Efficiency in Industrial Building Using Energy- Efficient Velux Daylighting Simulation.” Journal of Asian Architecture and Building Engineering 18(4): 271–84.


LI, DANNY H.W. ET AL. 2017. “A Review of Calculating Procedures on Daylight Factor Based Metrics under Various CIE Standard Skies and Obstructed Environments.” Building and Environment 112: 29–44.


MAHDAVI, ABDOLHAMID, S P RAO, AND NILA INANGDA. 2013. “Parametric Studies on Window-To-Wall Ratio for Day Lighting Optimisation in High-Rise Office Buildings in Kuala Lumpur , Malaysia.” Journal of design and Built Environment 12(June): 1–8.

MANGIONE, ALESSANDRO ET AL. 2018. “On the Validity of Daylight Factor for Evaluating the Energy Performance of Building.” Proceedings - 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018 (February): 1–4.

MARDALJEVIC, J., AND J. CHRISTOFFERSEN. 2017. “‘Climate Connectivity’ in the Daylight Factor Basis of Building Standards.” Building and Environment 113(August 2016): 200–209.

MAZLOOMI, MEHRDAD. 2010. “Horizontal Distribution of Daylight Factor with Reference to Window Wall Ratio in Pendentive Dome Buildings in Tropics , Case of Kuala Lumpur.” World Applied Sciences Journal 10(10): 1247–54.

MCMANUS, I.C. 2005. “Symmetry and Asymmetry in Aesthetics and the Arts.” European Review 13(2): 157–80.

N. SESHADRI, T. 1960. 51 Proceedings of The Indian Academy of Sciences-mathematical Sciences - Proc Indian Acad Sci-Math Sci Equations of Sky Components with a “C.I.E. Standard Overcast Sky.”

NOVÁKOVÁ, PETRA, AND FRANTIŠEK VAJKAY. 2019. “Factors Influencing The Value Of Daylight Factor.” MATEC Web Of Conferences 279: 03009.

RIZAL, YOSE, IMAM ROBANDI, AND EKO MULYANTO Yuniarno. 2016. “Daylight Factor Estimation Based on Data Sampling Using Distance Weighting.” Energy Procedia 100(September): 54–64.


SAMMARTINO, JONATHAN, AND STEPHEN E. PALMER. 2012. “Aesthetic Issues in Spatial Composition: Effects of Vertical Position and Perspective on Framing Single Objects.” Journal of Experimental Psychology: Human Perception and Performance 38(4): 865–79. http://doi.apa.org/getdoi.cfm?doi=10.1037/a0027736.

Y.AZMY,NEVEEN, AND RANIA E. ASHMAWY. 2018. “Effect of the Window Position in the Building Envelope on Energy Consumption.” International Journal of Engineering & Technology 7(3): 1861.

ZHANG, WEILONG, LIN LU, AND XINGYU XU. 2019. “Thermal and Daylighting Performance of Glass Window Using a Newly Developed Transparent Heat Insulated Coating.” Energy Procedia 158: 1080–85.


DOI: http://dx.doi.org/10.25126/jtiik.2020733160