Peningkatan Kinerja Jaringan Dengan Menggunakan Multi-Rule Algorithm


Tanwir Tanwir, Parma Hadi Rantelinggi, Sri Widiastuti


Algoritma pergantian adalah suatu mekanisme pergantian objek dalam cache yang lama dengan objek baru, dengan mekanisme  melakukan penghapusan objek sehingga mengurangi penggunaan bandwidth dan server load. Penghapusan dilakukan apabila cache penuh sehingga penyimpanan entri baru diperlukan. Secara umum algoritma FIFO, LRU dan LFU sering digunakan dalam pergantian objek, akan tetapi diperoleh suatu objek yang sering digunakan namun terhapus dalam pergantian cache sedangkan objek tersebut masih digunakan, akibatnya pada waktu klien melakukan permintaan dibutuhkan waktu yang lama dalam browsing objek. Untuk mengatasi masalah tersebut dilakukan kombinasi algoritma pergantian cache Multi-Rule Algorithm, dalam bentuk algoritma kombinasi ganda FIFO-LRU dan triple FIFO-LRU-LFU. Algoritma Mural (Multi-Rule Algorithm) menghasilkan respon pada cache size 200 MB dengan waktu tanggapan rata-rata berturut-turut 56,33 dan 42 ms, sedangkan pada algoritma tunggal memerlukan waktu tanggapan rata-rata 77 ms. Sehingga Multi-Rule Algorithm dapat meningkatkan kinerja terhadap waktu penundaan, throughput, dan hit rate. Dengan demikian, algoritma pergantian cache Mural, sangat direkomendasikan untuk meningkatkan akses klien.



Substitution algorithm is a mechanism to replace objects in the old cache with new objects, with a mechanism to delete objects so that it reduces bandwidth usage and server load. Deletion is done when the cache is full so saving new entries is needed. In general, FIFO, LRU and LFU algorithms are often used in object changes, but an object that is often used but is deleted in the cache changes while the object is still being used, consequently when the client makes a request it takes a long time to browse the object. To overcome this problem a combination of Multi-Rule Algorithm cache replacement algorithms is performed, in the form of a double combination algorithm FIFO-LRU and triple FIFO-LRU-LFU. The Mural algorithm (Multi-Rule Algorithm) produces a response on a cache size of 200 MB with an average response time of 56.33 and 42 ms respectively, whereas a single algorithm requires an average response time of 77 ms. So the Multi-Rule Algorithm can improve the performance of the delay, throughput, and hit rate. Thus, the Mural cache change algorithm, is highly recommended to improve client access.

Teks Lengkap:



AJORLOO, H. & MANZURI-SHALMANI, M.T., 2016. Throughput Modeling of Distributed Reservation Protocol. IEEE Transactions on Mobile Computing, 15(2), pp.503–515.

BAEK, LEE, NICOPOULOS, LEE, KIM., 2015. Size-Aware Cache Management for Compressed Cache Architectures. IEEE Transactions on Computers, 64(8), pp.2337-2352

CHEN, XIAO, LU, LIU., 2016. Me-CLOCK:A Memory-Efficient Framework to Implement Replacement Policies for Large Caches. Conference Name: IEEE Transactions on Computers, 65(8), pp. 2665-2671.

CAO, ZHANG, CHEN, LIU, KANG, GÜNDÜZ., 2019. Coded Caching With Asymmetric Cache Sizes and Link Qualities: The Two-User Case. IEEE Transactions on Communications, 67(9), pp.6112-6126

JI, M., CAIRE, G. & MOLISCH, A.F., 2015. The Throughput-Outage Tradeoff of Wireless One-Hop Caching Networks. IEEE Transactions on Information Theory, 61(12), pp.6833–6859.

LEE, MOLISCH., 2018. Caching Policy and Cooperation Distance Design for Base Station-Assisted Wireless D2D Caching Networks: Throughput and Energy Efficiency Optimization and Tradeoff. IEEE Transactions on Wireless Communications, 17(11), pp.7500-7514

NIKOLAOU, VAN RENESSE, SCHIPER., 2016. Proactive Cache Placement on Cooperative Client Caches for Online Social Networks. IEEE Transactions on Parallel and Distributed Systems, 27(4), pp.1174-1186

RANTELINGGI, P.H. & DJANALI, S., 2015. Kinerja Protokol Routing Pada Lingkungan Wireless Mesh Network Dengan Combined Scalable Video Coding. JUTI: Jurnal Ilmiah Teknologi Informasi, 13(1), pp.86-94–94.

RANTELINGGI, P.H., PAIKI, F.F. & RANTELOBO, K., 2017. Performance of routing protocol in MANET with combined scalable video coding. In: 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). pp.1–4.

SHIVARAM, GUPTA, SHASHANK KAMATH, 2018. Queuing Models for Different Caching Schemes by Caching Partial Files. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp.1234-1238

TANG, YIU, HUA., 2016. Exploit Every Bit: Effective Caching for High-Dimensional Nearest Neighbor Search. IEEE Transactions on Knowledge and Data Engineering, 28(5), pp.1175-1188.

TANWIR, HENDRANTORO, G. & AFFANDI, A., 2015. Early result from adaptive combination of LRU, LFU and FIFO to improve cache server performance in telecommunication network. In: 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA). 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA). pp.429–432.

TANWIR, HENDRANTORO, G. & AFFANDI, A., 2017. Combination Of Fifo-Lru Cache Replacement Algorithms On Proxy Server To Improve Speed Of Response To Object Requests From Clients. ARPN Journal of Engineering and Applied Sciences, 12(3), p.6.

XIA, XIAO., 2016. High-Performance and Endurable Cache Management for Flash-Based Read Caching. IEEE Transactions on Parallel and Distributed Systems, 27(12)pp. 3518-3531

WANG, DONG, WU., 2017. Throughput Analysis of the Cache-Enabled Device-to-Device Communication and Small Base Stations Assisting in Cellular Networks. 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). p.414-421.

YEN, CHIEN, CHANG., 2018. Cooperative Online Caching in Small Cell Networks with Limited Cache Size and Unknown Content Popularity. 2018 3rd International Conference on Computer and Communication Systems (ICCCS), pp. 173-177.