Prediksi Jumlah Pengiriman Barang Menggunakan Kombinasi Metode Support Vector Regression, Algoritma Genetika dan Multivariate Adaptive Regression Splines
Penulis
Nendi Nendi, Arief Wibowo Download PDFAbstrak
Sektor usaha logistik telah berkembang sangat pesat di Indonesia saat ini. PT. XYZΒ adalah sebuah perusahaan logistik yang menyediakan jasa pengiriman barang dari satu tempat menuju ke tempat yang lain. Sebagai perusahaan logistik dengan jumlah kendaraan 2.100 unit armada truk dan akan terus bertambah seiring dengan target yang dicanangkan perusahaan, dimana pada 2020 jumlah armada truk harus mencapai 6.000 unit truk. Saat ini strategi operasional logistik dihasilkan berdasarkan pengalaman dari steakholder. Hal ini tentu tidak bisa dipertanggung jawabkan secara ilmiah. Prediksi jumlah pengiriman barang harian dapat menjadi solusi dalam membantu perusahaan dalam merencanakan, memonitoring dan mengevaluasi strategi operasional logistik. Hasil pengujian menunjukkan penggabungan metode Support Vector Regression (SVR), algoritma genetika dan Multivariate Adaptive Regression Splines (MARS) dapat menghasilkan prediksi jumlah pengiriman barang harian dengan nilai Mean Absolute Percentage Error (MAPE) yaitu 0.0969% dengan parameter epsilon(π) 1.92172577675873E-20, complexitas(π) 62 dan gamma(Ξ³) 1.0.
Β
Abstract
The logistics business sector has developed very rapidly in Indonesia today. PT XYZ is a national logistics company that provides freight forwarding services from one place to another. As a national-scale logistics company, the company is supported by a fleet of 2,100 trucks. The number of fleets will continue to grow in line with the target set by the company, namely in 2020 the number of truck fleets must reach 6,000 trucks. Currently the logistics operational strategy is produced based on stakeholder experience, this certainly causes problems in the company's overall operations. Prediction of the number of daily goods shipments can be a solution in helping companies in planning, monitoring and evaluating logistical operational strategies, based on the company's ability in the availability of a fleet of vehicles for shipping. This study proposes a combination of Support Vector Regression (SVR) methods, genetic algorithms and Multivariate Adaptive Regression Splines (MARS) for problem solving in the prediction process, including in the selection of appropriate training data. The test results show that the combination of the three methods can produce predictions of the number of daily shipments with values of Mean Absolute Percentage Error (MAPE) 0.0969%, epsilon (π) 1.92172577675873E- 20, complexity (π) 62, and gamma (Ξ³) 1.0.
Teks Lengkap:
PDFReferensi
ANGGRAININGSIH, R., APRIANTO, G. R., & SIHWI, S. W. (2016). Time series forecasting using exponential smoothing to predict the number of website visitor of Sebelas Maret University. ICITACEE 2015 - 2nd International Conference on Information Technology, Computer, and Electrical Engineering: Green Technology Strengthening in Information Technology, Electrical and Computer Engineering Implementation, Proceedings, 14β19.
FEBRIYANTI, A., YOZZA, H., & HG, I. R. (2008). Penerapan metode multivariate adaptive regression spline (MARS) untuk mengidentifikasi komponen akreditasi sekolah( Kasus SMA / MA Di Propinsi Sumatera Barat ), 2(2), 44β53.
LU, C. J. (2014). Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing, 128, 491β499.
MAKRIDAKIS, S. & HIBON, M. 2000. The M3- Competition: results, conclusions and implications. International Journal of Forecasting, 16, pp.451-476.
MUβASYAROH, F. L. & MAHMUDY, W. 2016. Implementasi Algoritma Genetika dalam Optimasi Model AHP dan TOPSIS untuk Penentuan Kelayakan Pengisian Bibit Ayam Broiler di Kandang Peternak. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 3(4), 226-237.
NOERSASONGKO, E., JULFIA, F. T., SYUKUR, A., , P.,
PRAMUNENDAR, R. A., & SUPRIYANTO, C. (2016). A Tourism Arrival Forecasting using Genetic Algorithm based Neural Network. Indian Journal of Science and Technology, 9(4).
OTOK B. W. (2014). Pendekatan Multivariate Adaptive Regression SPLINES ( MARS ) pada Pemodelan Penduduk Miskin di Indonesia Tahun 2008-2012 ( Multivariate Adaptive Regression Splines ( Mars ) Approach on Modeling The Poor People in Indonesia , 2008-2012 ), 2012(November), 175β191.
QI, Z., TIAN, Y., & SHI, Y. (2013). Robust twin support vector machine for pattern classification. Pattern Recognition, 46(1), 305β316.
RAHARYANI, M. P., REGASARI, R., PUTRI, M., & SETIAWAN, B. D. (2018). Implementasi Algoritme Support Vector Regression Pada Prediksi Jumlah Pengunjung Pariwisata, 2(4), 1501β1509.
TAYLOR, S. A., GOODWIN, S., & CELUCH, K. (2004). The importance of brand equity to customer loyalty. Journal of Product & Brand Management, 13(4), 217β227.
VIJAYAKUMAR, S., & Wu, S. (1999). Sequential Support Vector Classifiers and Regression. International Conference on Soft Computing, 86(October 2014), 610β619.
YUAN, F.-C. (2012). Parameters Optimization Using Genetic Algorithms in Support Vector Regression for Sales Volume Forecasting. Applied Mathematics, 03(10), 1480β1486
DOI: http://dx.doi.org/10.25126/jtiik.2020722441