Pengembangan Mobile based Question Answering System dengan Basis Pengetahuan Ontologi
DOI:
https://doi.org/10.25126/jtiik.2020742255Abstrak
Informasi terkait kegiatan penerimaan mahasiswa baru (PMB) sesungguhnya telah banyak tersedia pada halaman web maupun brosur. Namun demikian, dimungkinkan terdapat berbagai informasi yang tidak dapat ditemukan secara langsung dalam media tersebut. Penggunaan mesin pencari juga tidak menjamin pengguna untuk mendapatkan informasi atau jawaban yang relevan dengan kebutuhan. Melakukan kunjungan ke kampus seringkali terkendala oleh jarak, waktu, dan jam kerja. Dalam penelitian ini, dikembangkan sebuah question answering system (QAS) terkait penerimaan mahasiswa baru agar pengguna mendapakan informasi yang sesuai dengan kebutuhannya, selalu bernilai benar, dan dapat diakses kapan saja. QAS dibangun dengan arsitektur tree tier dengan aplikasi mobile sebagai antarmuka, memanfaatkan metode pengolahan bahasa alami dalam memproses pertanyaan pengguna, dan ontologi sebagai basis pengetahuannya. Penelitian ini menggunakan model pengembangan SDLC, dengan model analisis yang digunakan yaitu: analisis kebutuhan sistem, analisis rancangan sistem, implementasi sistem, dan pengujian sistem. Pengujian terhadap sistem dilakukan dengan beberapa cara, yaitu: usability testing, dan pengujian akurasi jawaban. Pengujian menunjukkan QAS yang dibangun dapat diimplementasikan dengan baik sesuai dengan kebutuhan dengan akurasi jawaban sebesar 82.14%.
Abstract
The information regarding student admissions and related activities can be found and widely available on website or brochures. However, it is possible that the relevant information cannot be found directly from the media. The use of search engines also doesn’t guarantee users to get the relevant answer or information that satisfy their needs. Visiting the campus is often constrained by distance, time or working hours. In this study, a question answering system related to student admissions was developed so that users get the information that fits thier need, always give the correct answers, and can be accessed anytime. The QAS is built with a tree tier architecture with a mobile application as an interface. Natural language processing methods uses to process user questions, and ontology uses as the knowledge base. This study uses the SDLC development model, with the analysis model used namely: system requirements analysis, system design analysis, system implementation, and system testing. Testing the system is done by several ways, namely: usability testing, and test the accuracy of answers. The tests shows that the QAS can successfully implemented according to the requirement, with the accuracy of answer is 82.14%.
Downloads
Referensi
AVILA, C.V.S., CALIXTO, A.B., ROLIM, T.V., FRANCO, W., VENCESLAU, A.D.P., VIDAL, V.M.P., PEQUENO, V.M. & MOURA, F.F.D., 2019. MediBot : An Ontology based Chatbot for Portuguese Speakers Drug’s Users, in 21st International Conference on Enterprise Information Systems Volume 1, pp. 25–36. doi: 10.5220/0007656400250036.
AZHARI, SUBANAR, WARDOYO, R. & HARTATI, S., 2008 Model Representasi Informasi Dan Pengetahuan Untuk Proyek-Proyek Perusahaan Dengan, Jurnal Ilmiah Teknologi Informasi, 7, pp. 85–92.
BARJTYA, S., SHARMA, A. & RANI, U., 2017. A detailed study of Software Development Life Cycle ( SDLC ) Models, International Journal Of Engineering And Computer Science, 6(7). doi: 10.18535/ijecs/v6i7.32.
DWIVEDI, S. K. dan SINGH, V. 2013. Research and Reviews in Question Answering System, Procedia Technology, 10, pp. 417–424.
DE JESUS, L.M.M.D.A.M., 2015. ProntApp : A mobile question answering application for medicines. Universidade de Lisboa.
KALAIVANI dan DURAISWAMY,. 2012. Comparison of Question Answering Systems Based on Ontology and Semantic Web in Different Environment, Journal of Computer Science, 8(9), pp. 1407–1413.
KANAGARAJAN, K. dan ARUMUGAM, S., 2019. A Mobile based Intelligent Question Answering System for Education Domain, International Journal of Information Engineering and Electronic Business, 10(1). doi: 10.5815/ijieeb.2018.01.03.
KAVITHA, B.R. dan MURTHY, C.R., 2019. Chatbot for healthcare system using Artificial Intelligence, International Journal of Advance Research, Ideas and Innovations in Technology ISSN:, 5(3), pp. 1304–1307.
MASKUR, 2016. Perancangan CHATBOT Pusat Informasi Mahasiswa Menggunakan AIML Sebagai Virtual Assistant Berbasis Web, Jurnal KINETIK, 1(3), pp. 123–128.
MOLLAEI, A., RAHATI-QUCHANI, S. dan ESTAJI, A., 2012. Question classification in Persian language based on conditional random fields, in International eConference on Computer and Knowledge Engineering (ICCKE), pp. 295–300.
MONZ, C., 2003. From Document Retrieval to Question Answering. Universiteit van Amsterdam.
NAZIEF, B. dan ADRIANI, M., 1996. Confix Stripping: Approach to Stemming Algorithm for Bahasa Indonesia, Internal publication, Faculty of Computer Science, University of Indonesia, Depok, Jakarta. doi: 10.1145/1316457.1316459.
NIELSEN, J. dan MOLICH, R., 1990. Heuristic evaluation of user interfaces, in ACM CHI’90 Proceedings, pp. 249–256. doi: 10.1016/0921-4526(93)90674-U.
NUFUSULA, R. dan SUSANTO, A., 2018. Rancang Bangun Chat Bot Pada Server Pulsa Mengunakan Telegram Bot API, Journal of Information System, 3(1), pp. 80–88.
PURWARIANTI, A., NAKAGAWA, S. & TSUCHIYA, M., 2007. A Machine Learning Approach for Indonesian Question Answering System, in Conference: IASTED International Conference on Artificial Intelligence and Applications.
RAMBO, R., 2013. Searching the internet. Tersedia di: http://www2.ivcc.edu/rambo/fsi01/searching.htm. [Diakses 01 April 2019]
SURYAWAN, I.W.D., 2013. Sistem Question Answering Menggunakan Pendekatan Berbasis Pengetahuan. Universitas Gadjah Mada.
TAHRI, A. dan TIBERMACINE, O., 2013. DBPedia based factoid question answering system, International Journal of Web & Semantic Technology, 4(3), p. 23.
UNGER, C., Bühmann, L., Lehmann, J., Ngomo, A.N., Gerber, D., & Cimiano, P., 2012. Template-based question answering over RDF data, in WWW ’12 Proceedings of the 21st international conference on World Wide Web. Lyon, France, pp. 639–648.
WANG, D.S., 2010. A Domain-Specific Question Answering System Based on Ontology and Question Templates, in 11th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 151–156.
WANG, L., Wang, L., Zhang, H., Wang, D. & Huang, J., 2009. Chinese Question Classification Based on Semantic Gram and SVM, in 2009 International Forum on Computer Science-Technology and Applications, pp. 432–435.
XIE, W., Ding, R., Yan, J. & Qu, Y., 2018. A Mobile-Based Question-Answering and Early Warning System for Assisting Diabetes Management, Wireless Communications and Mobile Computing, 2018.
XU, J., ZHOU, Y. & WANG, Y. (2012) A Classification of Questions using SVM and Semantic Similarity Analysis, in 2012 Sixth International Conference on Internet Computing for Science and Engineering, pp. 31–34.
Yunmar, R. A. dan Wisesa, I.W.W., 2019. Design of Ontology-based Question Answering System for Incompleted Sentence Problem, in IOP Conference Series: Earth and Environmental Science, Volume 258, Number 1. Lampung Selatan: IOP Publishing, pp. 1–10. doi: 10.1088/1755-1315/258/1/012032.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).