Peramalan Butuhan Hidup Minimum Menggunakan Automatic Clustering dan Fuzzy Logical Relationship
DOI:
https://doi.org/10.25126/jtiik.201632202Abstrak
Kebutuhan hidup minimum (KHM) adalah standar kebutuhan seorang pekerja atau lanjang untuk dapat hidup layak secara fisik untuk kebutuhan satu bulan. Selain itu KHM berpengaruh terhadap upah minum provinsi dan kota. Oleh karena itu diperlukan suatu peramalan KHM untuk mengetahui nilai KHM di tahun yang akan datang. Peramalan ini bermanfaat untuk perusahaan dalam merencanakan keuangan perusahaan tahun depan. Dalam melakukan peramalan KHM menggunakan metode automatic clustering dan fuzzy logical relationship. Automatic clustering digunakan untuk membentuk sub-interval dari data time series yang ada. Sedangkan fuzzy logical relationship digunakan untuk melakukan peramalan KHM berdasarkan relasi fuzzy yang telah dikelompokan. Automatic clustering dapat menghasilkan cluster-cluster yang sangat baik sehingga dalam melakukan peramalan dalam fuzzy logical relationship memberikan akurasi yang tinggi. Dalam menghitung kesalahan menggunakan mean squere error (MSE), nilai kesalahan semakin berkurang ketika diterapkan automatic clustering dalam fuzzy logical relationship. Hasil peramalan memiliki nilai koefisien korelasi yang hampir mendekati satu.
Unduhan
Referensi
Askari, S., Montazerin, N. Dan Zarandi, M.H.F., 2015. A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of indepent variables. Applied Soft Computing, 35, 151-160.
Aznarte, J.L., Fdez, J.A. Azofra, A.A. dan Benitez, J. M., 2012. Financial time series forecasting with a bio-inspired fuzzy model.Expert Systems with Applications, 39, 12302-12309.
Badan Pusat Statistika, 2016. [data] Kebutuhan hidup minimum (online). Tersedia di: https://www.bps.go.id/linkTableDinamis/view/id/1212/> [Diakses 26 juli 2016]
Chen, S.M. dan Chen, C.D., 2011. Handling forecasting problems based on high-order fuzzy logical relationships. Expert Systems with Applications, 38, 3856-3864.
Chen, S.M. dan Chen, S.W., 2015. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship group and the probabilites of tren of fuzzy logical relatonships. IEEE Transactions on Cybernetics, Vol 45, No. 3.
Chen, S.M. dan Tunawijaya, K., 2011. Multivariate fuzzy forecasting based on fuzzy time series and automatic clustering technique. Expert System with Applications, 38, 10594-10605.
Cheng, S.H., Chen, S.M. dan Jian, W.S., 2015. A novel fuzzy time series forecasting method based on fuzzy logical relationships and similarity measures. IEEE International Conference on Systems, Man, and Cybernetics, 978(1), 4799-8697.
Cheng, S.H., Chen, S.M. dan Jian, W.S., 2016. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Information Sciences, 327, 272-287.
Garcia, A.J. dan Flores, W.G., 2016. Automatic clustering using nature-inspired metaheuristics : a survey. Applied Soft Computing, 41, 192-213.
Hung, W.H. dan Kang, S.C.J, 2014. Automatic clustering method for real-time contruction simulation. Advanced Engineering Informatic, 28, 138-152.
Liu, T.K., Chen, Y.P. dan Chou, J.H., 2011. Extracting fuzzy relations in fuzzy time series model based on approximation concepts. Expert Systems with Applications, 2011, 11624-11629.
Qiu, W., Liu, X. dan Li, H., 2011. A generalized method for forecasting based on fuzzy time series. Expert Systems with Applications, 38, 10446-10453.
Qiu, W., Zhang, P. dan Wang, Y., 2015. Fuzzy time series forecasting model based on automatic clustering techniques and generalized fuzzy logical relationship. Hindawi Publishing Corporation Mathematical Problems in Engineering, 962597.
Republik Indonesia. 2012. Undang-Undang No. 13 Tahun 2012 Tentang Komponen dan Pelaksanaan Tahapan Pencapaian Kebutuhan Hidup Layak. Peraturan Mentri Tenaga Kerja dan Transmigrasi RI Tahun 2015, No. 13. Sekretariat Negara. Jakarta.
Saha, S. dan Bandyopadhayay, S., 2013. A generalized automatic clustering algorithm in a multiobjective framework. Applied Soft Computing, 13, 89-108.
Song, Q. dan Chissom, B.S., 1993. Fuzzy time series and its models. Fuzzy time series, Vol. 54, Issue 3.
Song, Q. dan Chissom, B.S., 1993. Forecasting enrollment with fuzzy time series – part I. Fuzzy Sets and Systems, Vol. 54, Issue 1.
Song, Q. dan Chissom, B.S., 1994. Forecasting enrollments with fuzzy time series – part II. Fuzzy Sets and Systems, Vol. 62, Issue 1.
Wahyuni, I, Auliya, YA, Rahmi, A & Mahmudy, WF 2016, 'Clustering Nasabah Bank Berdasarkan Tingkat Likuiditas Menggunakan Hybrid Particle Swarm Optimization dengan K-Means', Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA), vol. 10, no. 2, pp. 24-33.
Wang, G.P., Chen, S.Y., Yang, X. dan Liu, Jun., 2014. Modeling and analyzing of conformity behavior : A fuzzy logic approach. Optik, 125, 6594-6598.
Wang, W. dan Liu, X., 2015. Fuzzy forecasting based on automatic clustering and axiomatic fuzzy set classification. Information Sciences, 294, 78-94.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).