Sistem Pengenalan Wajah 3D Menggunakan ICP dan SVM
DOI:
https://doi.org/10.25126/jtiik.2019661609Abstrak
Pengenalan wajah merupakan salah satu teknologi biometrik yang banyak diaplikasikan terutama pada sistem keamanan. Sistem absensi dengan wajah, mengenali pelaku tindak kriminal dengan CCTV adalah beberapa aplikasi dari pengenalan wajah. Efisiensi dan akurasi menjadi faktor utama pengenalan wajah banyak diaplikasikan. Pada penelitian ini, sistem identifikasi diimplementasikan dalam bentuk pengenalan wajah 3 dimensi berbasis template matching menggunakan metode Iterative Closest Point (ICP) dan klasifikasi Support Vector Machine (SVM). Iterative Closest Point (ICP) memberikan informasi dimensi dengan meminimalisasi kesalahan antara titik-titik dalam satu tampilan dan titik terdekatnya agar template wajah 3D yang dibuat sesuai dengan citra referensi. Sedangkan SVM adalah adalah metode klasifikasi dengan menentukan kelas citra berdasarkan informasi yang diperoleh dari proses ektraksi ciri. Hasil akhir dari penelitian ini adalah suatu aplikasi yang mampu melakukan identifikasi pengenalan pola wajah 3D. Berdasarkan confusion matrix, diperoleh bahwa sistem ini bekerja dengan precision 97,30%, recall 100,00%, accuracy 97,56% pada pengambilan frame citra sebanyak 48, iterasi ke 49, partisi 12, dan menggunakan SVM tipe OAA.
Abstract
Face recognition is a biometric technology that is widely applied especially in the security system. Attendance systems with faces, recognizing criminals with CCTV are some of the applications of face recognition. Efficiency and accuracy are the main factors that face recognition is widely applied. In this study, the identification system was implemented in the form of 3-dimensional face recognition based on template matching using the Iterative Closest Point (ICP) method and Support Vector Machine (SVM) classification. Iterative Closest Point (ICP) provides dimensional information by minimizing errors between points in one view and the closest point so that 3D face templates are made in accordance with the reference image. Whereas SVM is a classification method by determining the image class based on information obtained from the extraction of features. The final result of this study is an application that is able to identify 3D face pattern recognition. Based on the confusion matrix, found that this system works with 97.30% precision, recall 100.00%, 97.56% accuracy in image frame capture as much as 48 iterations to 49, the partition 12, and using the SVM-type OAA.
Downloads
Referensi
ABATE, A.F., NAPPI, M., RICCIO, D., SABATINO, G., 2007. 2D and 3D face recognition: A survey, Pattern Recognition Letters.
ABDELMOTTLEP, M.A., 2016. World Internal Security & Police Index, International Science Association (IPSA), Florida,
AJMERA, R., NIGAM, A., GUPTA, P, 2014. 3D Face Recognition using Kinect, ICVGIP’14 Proceedings of the Indian Conference on Conference on Computer Vision Graphics and Image Processing Article No.76, India.
AFRILIANA, I, 2015. Pengolahan Citra Digital, Poltek Harapan Bangsa.
ALABBASI, H.A., MOLDOVEANU, F., 2015. Real Time Facial Emotion Recognition using Kinect V2.0 Sensor, IOSR Journal of Computer Engineering (IOSR-JCE) Volum 17, Issue 3, Ver. II.
AMOR, B.B., OUJI, K., ARDABILIAN, M., CHEN. L., 2008. 3D Face recognition by ICP-based shape matching” LIRIS Lab, Lyon Research Center for Images and Intelligent Information System.
BASIR, B., WARDI, ZAINUDDIN, Z., Agustus 2017. Sistem Keamanan Rumah Berbasis Kinect. Jurnal IT, Volume 8 No 2. 2017.
BUDI, A. SUMA'INNA, S., MAULANA, H., 2016. Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA), Jurnal Teknik Informatika Vol 9 No. 2.
COOK, J. 2004. Face Recognition from 3D Data using Iterative Closest Point Algorithm and Gaussian Mixture Models. Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04).
DHRITI, KAUR, M., 2012. K-Nearest Neighbor Classification Approach for Face and Fingerprint at Feature Level Fusion. International Journal of Computer Applications (0975 – 8887), Volume 60– No.14.
FRANK, B. 2008. A 3D Face Matching Framework. IEEE International Conference on Shape Modeling and Applications.
GOOS, J.H.A.J.V.L.G., 2002. Pattern Recognition with Support Vector Machines. NewYork: Springer.
HAAR, F.B., VELTKAMP, R.C., 2009. A 3D Face Matching Framework, Department of Information and Computing Sciences, Utrecht University, Netherland.
HIREMATH, M., HIREMATH, P.S., 2017. 3D Face Recognition Based on Symbolic FDA Using SVM Classifer with Similarity and Dissimilarity Distance Measure, International Journal of Pattern Recognition and Artifcial Intelligence Vol. 31, No. 4.
LI, B., MIAN, A., LIU, W., & KRISHNA, A. 2013. Using kinect for face recognition under varying poses, expressions, illumination and disguise, in Applications of Computer Vision (WACV) IEEE Workshop on, pp. 186–192.
PRASETYO, E., 2014. Data Mining-Mengolah Data Menjadi Informasi Menggunakan Matlab, Yogyakarta.
MUJIB, K., HIDAYATNO, A., PRAKOSO, T., 2018. Pengenalan Wajah Menggunakan Local Binary Pattern (LBP) dan Support Vector Machine (SVM),” TRANSIENT, vol. 7, no. 1, pp. 124-130.
MRACEK, S., DRAHANSK, M., DVORAK, R., PROVAZNIK, I., VANA, J., 2014. 3D Face Recognition on Low-Cost Depth Sensors.
NURAJIZAH, S., 2013. Penerapan Metode Support Vector Machine Berbasis Particle. Jurnal Techno Nusa Mandiri, vol. 1, no. 1, pp. 216-226.
PRASETYO, E., 2014. Data Mining-Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta.
PRAWESTININGTYAS, A.M.A.E., 2009. Forensic Identification Based on Both Primary and Secondary Examination Priority in Victim Identifiers on Two Different Mass Disaster Cases, Jurnal Kedokteran Brawijaya, Vol XXV, No.2, p. 87.
SADA, I.H., TRITOASMORO, I.I., BUDIMAN, G., 2011. Pemodelan Wajah 3D Melalui Pendeteksian Fitur Wajah 2D Menggunakan Teknik Morphing,” Universitas Telkom.
THOME, A.C.G., 2012. SVM Classifiers – Concepts and Applications to Character Recognition. Federal University of Rio de Janeiro, Brasil November 7th.
WIDODO, P.P., HANDAYANTO, R.T., HERLAWATI, 2013. Penerapan Data Mining Dengan Matlab. Bandung: Rekayasa Sains.
YANG, H. 2015. An Improved Iterative Closest Points Algorithm. World Journal of Engineering and Technology, 3, 302-308.
ZHANG, D., & LU, G., 2012. 3D Biometrics Systems and Applications, Hong Kong: Springer.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).