Penggalian Perilaku Pemain dalam Penentuan Tipe Permainan pada E-Learning Pemrograman Berbasis Gamification
DOI:
https://doi.org/10.25126/jtiik.2020701295Abstrak
Salah satu kompetensi utama yang harus dimiliki oleh lulusan dari jurusan atau program studi bidang keilmuan komputer adalah kemampuan programming (membuat program). Berbagi informasi untuk meningkatkan kualitas pembelajaran pemrograman telah dilakukan di banyak kampus di Indonesia. Salah satunya adalah penerapan media pembelajaran online atau disebut juga sebagai E-Learning. Salah satu sistem pembelajaran yang paling umum, yang didukung oleh teknologi informasi, adalah e-learning. Namun, banyak juga sistem e-learning tidak mencapai tujuan yang diinginkan karena ketidakpatuhan dan kurangnya pengetahuan tentang teknik dan metode untuk pengembangan sistem informasi online. Tujuan yang dicapai antara lain efisiensi, efektifitas, motivasi dan keterlibatan siswa. Pendekatan gamification dapat digunakan untuk meningkatkan beberapa hal tersebut demi tercapainya tujuan pembelajaran online. Dalam sistem Code Maniac, terdapat beberapa elemen gamification yang digunakan, yaitu poin pengalaman, poin aktivitas dan badge. Namun, hal tersebut terbukti masih kurang meningkatkan motivasi mahasiswa dalam menggunakan Code Maniac. Pendekatan player-centric memungkinkan sistem menyesuaikan gameplay yang sesuai dengan gaya bermain seorang pemain. Untuk dapat mewujudkan sebuah media pembelajaran yang berorientasi pada pemain, maka dibutuhkan sebuah mekanisme untuk mengenali karakteristik pemainnya. Pada penelitian ini menekanan metode yang digunakan untuk menggali perilaku permainan. Penggalian pola dilakukan pada data log proses per pemain dan per sesi yang berjumlah 136 proses. Kemudian proses tersebut dikelompokan sesuai dengan kedekatan atau kesamaan karakteristik bermain. Hasil penentuan jumlah kelompok yang paling optimal adalah k=2 dan k=3. Untuk itu pengelompokan dilakukan dan menghasilkan 2 kelompok dan 3 kelompok data. Kelompok tersebut dapat menjadi dasar untuk untuk penentuan gameplay pada Code Maniac.
Abstract
One of the main competencies that must be possessed by graduates of departments or study programs in computer science is programming skills (making programs). Sharing information to improve the quality of programming learning has been done on many campuses in Indonesia. One of them is the application of online learning media or also called the E-Learning.. One of the most common learning systems, supported by information technology, is e-learning. However, many e-learning systems do not achieve the desired goals because of non-compliance and lack of knowledge about techniques and methods for developing information systems online. The objectives achieved include efficiency, effectiveness, motivation and student involvement. The gamification approach can be used to improve some of these things in order to achieve online learning goals. In the Code Maniac system, there are several gamification elements used, namely experience points, activity points and badges. However, this proved to be still lacking in increasing student motivation in using Code Maniac. The player-centric approach allows the system to adjust the gameplay to suit a player's playing style. To be able to realize a player-oriented learning media, a mechanism is needed to recognize the characteristics of the players. In this study emphasizes the methods used to explore game behavior. Pattern mining is performed on process log data per player and per session which amounts to 136 processes. Then the process is grouped according to the closeness or similarity of playing characteristics. The results of determining the most optimal number of groups are k = 2 and k = 3. For this reason, grouping is done and produces 2 groups and 3 groups of data. The group can be the basis for determining the gameplay in Code Maniac.
Downloads
Referensi
AALST, W. VAN DER. 2011 Process mining : discovery, conformance and enhancement of business processes. Springer.
VAN DER AALST, W. 2016. Data Science in Action, in Process Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 3–23. doi: 10.1007/978-3-662-49851-4_1.
BIRK, M. V. ET AL. 2015. Modeling Motivation in a Social Network Game Using Player-Centric Traits and Personality Traits, in. Springer, Cham, pp. 18–30. doi: 10.1007/978-3-319-20267-9_2.
DANUTAMA, K. AND LIEM, I. 2013. Scalable Autograder and LMS Integration, Procedia Technology, 11, pp. 388–395. doi: 10.1016/j.protcy.2013.12.207.
DIJKMAN, R. ET AL. 2011. Similarity of business process models: Metrics and evaluation, Information Systems, 36(2), pp. 498–516. doi: 10.1016/j.is.2010.09.006.
DOMÍNGUEZ, A. et al. 2013 . Gamifying learning experiences: Practical implications and outcomes, Computers & Education. Pergamon, 63, pp. 380–392. doi: 10.1016/J.COMPEDU.2012.12.020.
ELLIS, R. A., GINNS, P. AND PIGGOTT, L. 2009 E‐learning in higher education: some key aspects and their relationship to approaches to study. Higher Education Research & Development. Routledge , 28(3), pp. 303–318. doi: 10.1080/07294360902839909.
HAN, I. AND SHIN, W. S. 2016. The use of a mobile learning management system and academic achievement of online students, Computers & Education. Pergamon, 102, pp. 79–89. doi: 10.1016/J.COMPEDU.2016.07.003.
HARTIGAN, J. A. AND WONG, M. A. 1979 Algorithm AS 136: A K-Means Clustering Algorithm, Applied Statistics. WileyRoyal Statistical Society, 28(1), p. 100. doi: 10.2307/2346830.
ISKANDAR, K. ET AL. 2015 . Evaluating a Learning Management System for BINUS International School Serpong, Procedia Computer Science. Elsevier, 59, pp. 205–213. doi: 10.1016/J.PROCS.2015.07.556.
JUHAŇÁK, L., ZOUNEK, J. AND ROHLÍKOVÁ, L. 2017. Using process mining to analyze students quiz-taking behavior patterns in a learning management system, Computers in Human Behavior. doi: 10.1016/j.chb.2017.12.015.
JUNG, J., BAE, J. AND LIU, L. 2009. Hierarchical clustering of business process models, International Journal of Innovative …, 5(12), pp. 613–616. Available at: http://www-static.cc.gatech.edu/~lingliu/papers/2009/Bae-ISII08-09.pdf (Accessed: 6 December 2013).
KODINARIYA, T. M. AND MAKWANA, P. R. 2013. Review on determining number of Cluster in K-Means Clustering, International Journal of Advance Research in Computer Science and Management Studies, 1(6), pp. 2321–7782.
MAGERKO, B. ET AL. 2008. Intelligent adaptation of digital game-based learning, in Proceedings of the 2008 Conference on Future Play Research, Play, Share - Future Play ’08. New York, New York, USA: ACM Press, p. 200. doi: 10.1145/1496984.1497021.
MARTIN, C. D. 2003 Computing curricula 2001, ACM SIGCSE Bulletin. doi: 10.1145/782941.782945.
MENDLING, J., VAN DONGEN, B. F. AND VAN DER AALST, W. M. P. 2007. On the Degree of Behavioral Similarity between Business Process Models, in Proceedings 6th GI Workshop on Event-Driven Process Chains, pp. 39–58. doi: 10.1.1.143.1511.
ORJI, R. ET AL. 2013. Tailoring persuasive health games to gamer type. in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’13. New York, New York, USA: ACM Press, p. 2467. doi: 10.1145/2470654.2481341.
PRADANA, F., BACHTIAR, F. A. AND PRIYAMBADHA, B. 2018. PENGARUH ELEMEN GAMIFICATION TERHADAP HASIL BELAJAR SISWA PADA E-LEARNING PEMROGRAMAN JAVA, Semnasteknomedia, pp. 7–12.
ROUSSEEUW, P. J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, pp. 53–65. doi: 10.1016/0377-0427(87)90125-7.
SIMÕES, J., REDONDO, R. D. AND VILAS, A. F. 2013. A social gamification framework for a K-6 learning platform. Computers in Human Behavior. Pergamon, 29(2), pp. 345–353. doi: 10.1016/J.CHB.2012.06.007.
SOFLANO, M., CONNOLLY, T. M. AND HAINEY, T. 2015. An application of adaptive games-based learning based on learning style to teach SQL. Computers & Education. Pergamon, 86, pp. 192–211. doi: 10.1016/J.COMPEDU.2015.03.015.
SUN, P.-C. ET AL. 2008. What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction’, Computers & Education. Pergamon, 50(4), pp. 1183–1202. doi: 10.1016/J.COMPEDU.2006.11.007.
URH, M. ET AL. 2015. The Model for Introduction of Gamification into E-learning in Higher Education. Procedia - Social and Behavioral Sciences. Elsevier B.V., 197(February), pp. 388–397. doi: 10.1016/j.sbspro.2015.07.154.
VASSILEVA, D. 2012. ADAPTIVE E-LEARNING CONTENT DESIGN AND DELIVERY BASED ON LEARNING STYLES AND KNOWLEDGE LEVEL, Serdica J. Computing, 6, pp. 207–252. Available at: http://sci-gems.math.bas.bg/jspui/bitstream/10525/1801/1/sjc-vol6-num2-2012-p207-p252.pdf (Accessed: 23 February 2018).
YULIANTO, S. V. AND LIEM, I. 2014. Automatic Grader for Programming Assignment Using Source Code Analyzer., in, pp. 0–3
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).