Optimasi Sistem Navigasi Robot Bencana dengan Algoritma Bug dan Jaringan Syaraf Tiruan

Penulis

  • Son Kuswadi Politeknik Elektronika Negeri Surabaya
  • Ardelia Natasya GO P.T. Sutindo, Surabaya
  • Muhamad Nasyir Tamara Politeknik Elektronika Negeri Surabaya
  • Indra Adji Sulistijono Politeknik Elektronika Negeri Surabaya

DOI:

https://doi.org/10.25126/jtiik.2018551153

Kata Kunci:

robot bencana, perencanaan lintasan, navigasi, algoritma bug, jaringan syaraf tiruan

Abstrak

Agar robot bencana bisa melaksanakan tugas tertentu pada medan yang tak beraturan dan tidak diketahui keadaannya secara dinamis, harus memiliki kemampuan pemetaan. Berdasarkan peta yang telah dibuat, maka robot bisa bergerak sesuai dengan peta tersebut. Makalah ini membahas implementasi pemetaan dan navigasi robot, dengan menggunakan algoritma buguntuk membuat lintasan yang dapat menghindari halangan. Lintasan tersebut kemudian dioptimalkan dengan menggunakan jaringan syaraf tiruan untuk memilih lintasan terpendek. Metode yang diusulkan ini kemudian diuji baik menggunakan perangkat lunak dan eksperimen di medan laboratorium.

 

Abstract

 In order to perform certain task in a cluttered and unknown dynamic field, a disaster robot should have mapping capability. Based on the map, then robot will move accordingly. This paper describes the implementation of mapping and navigation of the robot by using bug algorithm to avoid the obstacle. The paths optimized by using artificial neural networks to select the shortest one. The proposed method then implemented both by simulation and experimental in lab scale field.

Downloads

Download data is not yet available.

Biografi Penulis

  • Son Kuswadi, Politeknik Elektronika Negeri Surabaya
    Departemen Teknik Mekanika dan Energi, Prodi Teknik Mekatronika Politeknik Elektronika Negeri Surabaya

Referensi

BLITCH J.G. & R. MAUER, 2000. KNOBSAR: A Knowledge Based System Prototype for Robot Assisted Urban Search and Rescue, Simulation, Vol. 66, pp. 375-391

BLITCH J., N. SIDKI, & T. DURKIN, 2000. Tactical Mobile Robots for Urban Search and Rescue, Proceedings of the SPIE - The International Society for Optical Engineering, vol. 4024, pp. 201-211

BURKE J., R. MURPHY, M. COOVERT, D. RIDDLE, 2004. Moonlight in Miami: An Ethnographic Study of Human-Robot Interaction in USAR, Human-Computer Interaction, Special Issue on Human-Robot Interaction, vol. 19, pp. 85-116, 2004.

BUNIYAMIN,N.W., A. J. WAN NGAH, Z. MOHAMAD, 2014. PointsBug Versus TangentBug Algorithm, A Performance Comparison In Unknown Static Environment, 2014 IEEE on Sensors Applications Symposium (SAS), pp. 278 - 282, February

CASPER J., M. MICIRE, R. MURPHY, 2000. Issues in Intelligent Robots for Search and Rescue, SPIE Ground Vehicle Technology II, Vol. 4, pp. 41-46

DELMERICO J., E. MUEGGLER, J. NITSCH, D. SCARAMUZZA, 2017. Active autonomous aerial exploration for ground robot plath planning, IEEE Robotics and Automation Letter, Vol. 2, No. 2, April.

GEOFFREY, A.H., & S. SINGH, 2012. Multirobot coordination with periodic connectivity: Theory and experiment, IEEE Trans on Robotics, Vol 28, No.4, August

GLASIUS R., A. KOMODA, S.C.A.M. GIELEN, 1995. Neural Network Dynamics for Path Planning and Obstacle Avoidance, Neural Networks, Vol. 8

HIROSE S., 1993. Biologically Inspired Robots: Snake-like Locomotors and Manipulators, Oxford University Press, Oxford.

JENNINGS, J.S., G. WHELAN, W.F. EVANS, 1997. Cooperative Search and Rescue with a Team of Mobile Robots, 8th Int. Conf. on Advanced Robotics, pp. 193-200

LOPES L., J. CONNELL, P. DARIO, R. MURPHY, P. BONASSO, B. NEBEL, and R. BROOKS, 2001. Sentience in Robots: Applications and Challenges," IEEE Intelligent Systems, vol. 16, pp. 66-69.

MASUDA, R., T. OINUMA and A. MURAMATSU, 1996. “Multi-Sensor Control System for Rescue Robot," in 1996 IEEE/SICE/RSJ Int. Conf. on Multisensor Fusion and Integration for Intelligent Systems, pp. 381-387

SCHOLTZ J., J. YOUNG, J.L. DRURY, H.A. YANCO, 2004. Evaluation of human-robot interaction awareness in search and rescue Proceeding International Conference Robotics and Automation (ICRA 2014), 26 April – 1 May 2004

SERON J., J.L. MARTINEZ, A. MANDOW, A.J. REINA, J. MORALES, A.J. GARCIA-CEREZO, 2014. Automation of the arm-aided climbing maneuver for tracked mobile manipulator, IEEE Trans. On Industrial Electronics, Vol. 61, No 7, July, pp. 3638-3647

SON KUSWADI, RIYANTO SIGIT, INDRA ADJI S., M. NASYIR TAMARA, DZIKRI ADITYA SAHANAS, GALANG ILMAN ISLAMI, 2016a). Adaptive Morphology-based design of multi-locomotion flying and crawling robot “PENS-FlyCrawl”, Proceeding IEEE Knowledge Creation and Intelligent Computing, Manado 18-20 November 2016, Manado, in press

SON KUSWADI, RIYANTO SIGIT, INDRA ADJI S., M. NASYIR TAMARA, RAKA CHANDRADITYA, RONA ROBERTY NAILUS SHOFI, 2016b. Optimal Cone of Relative Position Acquisition Module of Multi Mobile Robot, Proceeding IEEE Knowledge Creation and Intelligent Computing, Manado 18-20 November 2016, Manado.

TADOKORO S., R. VERHOEVEN, M. MILLER, T. TAKAMORI, 1999. A Portable Parallel Manipulator for Search and Rescue at Large-Scale Urban Earthquakes and an Identification Algorithm for the Installation in Unstructured Envinronments, Proc. 1999 IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, pp. 1222-1227

VOYLES, RM, 2000. TerminatorBot: A Robot with Dual-Use Arms for Manipulation and Locomotion, Proc. Of the 2000 Int. Conf. on Robotics and Automation, pp. 61-66

Diterbitkan

30-10-2018

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Optimasi Sistem Navigasi Robot Bencana dengan Algoritma Bug dan Jaringan Syaraf Tiruan. (2018). Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(5), 635-642. https://doi.org/10.25126/jtiik.2018551153