Model Sistem Pendukung Keputusan Kelompok untuk Penilaian Gangguan Depresii, Kecemasan dan Stress Berdasarkan DASS-42

Penulis

  • Sri Kusumadewi Universitas Islam Indonesia
  • Hepi Wahyuningsih Universitas Islam Indonesia

DOI:

https://doi.org/10.25126/jtiik.2020721052

Abstrak

Depresi, kecemasan dan stress merupakan tiga gangguan yang sering dijumpai di masyarakat. Ketiga gangguan tersebut memiliki gejala yang hampir mirip. Depression, Anxiety and Stress Scales (DASS) merupakan salah satu alat ukur yang dapat digunakan untuk mengukur tingkat keparahan ketiga gangguan tersebut. DASS dengan jumlah item/gejala sebanyak 42 item dikenal dengan nama DASS-42. Alat ukut ini membedakan dengan jelas item/gejala dari setiap gangguan. Setiap gangguan memiliki item yang mempengaruhi sebanyak 14 item. Pada penelitian ini dibangun model Sistem Pendukung Keputusan Kelompok (SPKK) yang memungkinkan para psikolog untuk berkolaborasi memberikan preferensi terkait prioritas gangguan yang akan terjadi apabila diketahui item/gejala tertentu menurut DASS-42. Preferensi diberikan dengan format ordered vectors. Untuk memudahkan proses agregasi/komposisi, selanjutnya dilakukan transformasi preferensi ke relasi preferensi fuzzy. Operator Ordered Weighted Averaging (OWA) digunakan untuk melakukan agregasi peferensi menjadi satu matriks. Proses seleksi alternatif terbaik dilakukan dengan menggunakan Quantifier Guided Dominance Degree (QGDD). Hasil pengujian menunjukkan bahwa ketepatan hasil SPKK terhadap DASS-42 adalah sebesar 71,43% (30 dari 42 item/gejala). Item/gejala yang beririsan secara signifikan antara gangguan kecemasan dan stress sebesar 16,67%. (7 dari 42), antara depresi dan kecemasan sebesar 9,52% (4 dari 42). Secara umum SPKK ini mampu mengakomodasi preferensi para pengambil keputusan dalam memberikan bobot pengaruh. Gangguan kecemasan dan gangguan stress memiliki gejala yang sangat mirip sehingga untuk beberapa item.gejala pada DASS-42 ada perbedaan yang cukup signifikan.

 

Abstract

Depression, anxiety and stress are three disorders that are often found in the community. These three disorders have almost identical symptoms. Depression, Anxiety and Stress Scales (DASS) is an psychological instrument that can be used to measure the severity of these disorders. DASS with a total of 42 items known as DASS-42. This instrument distinguishes clearly the symptoms of each disorder. Each disorder has 14 items affect. The three disorders have a number of symptoms that are similar, even a symptom may affect two or three disorders with different levels of influence. In this study, a Group Decision Support System (GDSS) model was developed so that psychologists can collaborate to give preference regarding priority of disorders that would occur if certain items / symptoms were identified by  DASS-42. Preferences are given in ordered vectors format. The preferences given by each decision maker aggregated to get a single preference. These preferences will be transformed to the fuzzy preference relation format. Ordered Weighted Averaging (OWA) operator used to aggregation process for all decision maker preference. The OWA operator are used to aggregate into one matrix. The best alternative selected by using Quantifier Guided Dominance Degree (QGDD). The test results show that the accuracy of the GDSS results on DASS-42 is 71.43% (30 of 42 items / symptoms). Symptoms that overlap significantly between anxiety and stress disorders are 16.67%. (7 of 42), between depression and anxiety by 9.52% (4 of 42). The GDSS is able to accommodate the preferences of decision makers in giving influence weight. Anxiety and stress disorder have very similar symptoms so that for some symptoms in the DASS-42 there are significant differences.


Downloads

Download data is not yet available.

Referensi

ALYOUBI, B.A., 2015. Decision Support System and Knowledge-based Strategic Management. Procedia Computer Science, [online] 65 (2015), pp. 278, 284. Tersedia pada: <https://www.sciencedirect.com/science/article/pii/S1877050915029099>

BOSE, U., 2015. Design and Evaluation of A Group Support System Supported Process to Resolve Cognitive Conflicts. Computers in Human Behavior, [online] 49 (2015), pp. 303, 312. Tersedia pada: <https://www.sciencedirect.com/science/article/pii/S0747563215002009>

CHEN, C.V., dan GEORGE, S.A., 2017. Hormones, Brain and Behavior. Third edition. Groningen: Elsenier. Volume 4, pp. 251, 274.

CHICLANA, F., HERRERA-VIEDMA, E., HERRERA, F., dan ALONSO, S., 2007. Some Induced Ordered Weighted Averaging Operators and Their Use for Solving Group Decision Making Problems based on Fuzzy Preference Relations. European Journal of Operational Research, [online] 182 (1), pp. 383, 399. Tersedia pada: <https://www.sciencedirect.com/science/article/abs/pii/S0377221706008095>

CNN, 2017. WHO Umumkan Tingkat Depresi Dunia Naik 18 persen. [online] Tersedia pada: CNN Indonesia <https://www.cnnindonesia.com/gaya-hidup/20170331090149-255-203950/who-umumkan-tingkat-depresi-dunia-naik-18-persen>. Diakses pada tanggal 24 Agustus 2018.

delMORAL, M.J., CHICLANAB, F., GARCIAC, J.M.T., dan VIEDMA, E.H., 2017. An Alternative Calculation of The Consensus Degree in Group Decision Making Problems. Procedia Computer Science, [online] 122 (2017), pp. 735, 742. Tersedia pada <https://www.sciencedirect.com/science/article/pii/S1877050917326790>

DENISE, M.A., LUIZ, A.N-M., ALBA, L.B.L.B., JULIANA, L.L., 2017. Predictive Factors of Anxiety and Depression in Patients with Acute Coronary Syndrome. Psychiatric Nursing, [online] 31 (2017), pp. 549, 552. Tersedia pada <https://www.sciencedirect.com/science/article/pii/S0883941717300602>

FINK, G., ed. 1., 2016. Stress, Definitions, Mechanisms, and Effects Outlined: Lessons from Anxiety. Dalam Fink, G., 2016. Stress: Concepts, Cognition, Emotion, and Behavior (Handbook of Stress Series). Elsevier. Tersedia pada: <https://www.elsevier.com/books/stress-concepts-cognition-emotion-and-behavior/fink/978-0-12-800951-2>. Diakses pada tanggal 20 April 2018.

HERRERA, F., MARTINEZ, L., dan SANCHEZ, P.J., 2004. Managing non-homogenous Information in Group Decision Making, Europian Journal of Operation Research, [online] 166, pp. 115, 132, Tersedia pada: <http://www.sci2s.ugr.es/publications/ficheros/EJOR-Herrera-Martinez-Sanchez-2004.pdf>

HERRERA-VIEDMA, E., CHICLANA, F., HERRERA, F., dan ALONSO, S., 2007. A Group Decision Making Model with Incomplete Fuzzy Preference Relations Based on Additive Consistency. CYBERNETICS, [online] 37 (1), pp. 176, 189. Tersedia pada <https://ieeexplore.ieee.org/document/4067078/ >

HILLEGERSBERG, J.V., dan KOENEN, S. 2014. Adoption of web-based Group Decision Support Systems: Conditions for Growth. Procedia Technology, [online] 16 (2014) pp. 675, 683. Tersedia pada <https://www.sciencedirect.com/science/article/pii/S2212017314002436 >

HUANG, C-L., LO, C-C., CHAO, K-M,. dan YOUNAS, M., 2006. Reaching Consensus: A Moderated Fuzzy web Services Discovery Method. Information and Software Technology, [online] 48 (6), pp. 410, 423. Tersedia pada: <https://www.sciencedirect.com/science/article/abs/pii/S0950584905001977>

KAMIS, N.H., CHICLANA, F., dan LEVESLEYA, J., 2018. Preference Similarity Network Structural Equivalence Clustering based Consensus Group Decision Making Model. Applied Soft Computing, [online] 67 (2018), pp. 706, 720. Tersedia pada: <https://www.sciencedirect.com/science/article/pii/S1568494617306853>

KUSUMADEWI, S., HARTATI, S., WARDOYO, R., dan HARJOKO, A., 2006. Fuzzy Multi-Attribute Decision Making (FMADM). Yogyakarta: Graha Ilmu.

LIU, X., dan HAN, S., 2008. Orness and Parameterized RIM Quantifier Aggregation with OWA Operators: A Summary. International Journal of Approximate Reasoning, [online] 48 (1), pp. 77, 97. Tersedia pada: <https://www.sciencedirect.com/science/article/pii/S0888613X07000709 >

NOVOPSYCH, 2018. Depression Anxiety Stress Scales – Long Form (DASS-42). [online] Tersedia pada: NovoPsych: Software for Administering Outcome Questionnaires to Clients for Psychologists: <https://novopsych.com/assessments/depression-anxiety-stress-scales-long-form-dass-42/>. Diakses pada tanggal 15 Juli 2018.

PERMENSOS, 2010. Peraturan Menteri Sosial Republik Indonesia nomor 84/HUK/2010 tentang Lembaga Konsultasi Kesejahteraan Keluarga. Jakarta.

RAHMANITA, E., PRASTITI, N., dan JAZZARI, I., 2018. Penggunaan Metode AHP dan FAHP dalam Pengukuran Kualitas Keamanan Website E-Commerce. Jurnal Teknologi Informasi dan Ilmu Komputer, [online] 5 (3), pp. 371, 380. Tersedia pada: <http://jtiik.ub.ac.id/index.php/jtiik/article/view/816/pdf>

SATIVA, R.L., 2017. Waduh! Baru 8 Persen Pasien Depresi di Indonesia yang Tertangani. [online] Tersedia pada: Detik Health <https://health.detik.com/berita-detikhealth/d-3497368/waduh-baru-8-persen-pasien-depresi-di-indonesia-yang-tertangani>. Diakses pada tanggal 24 Agustus 2018.

SERENITYPROGRAME, 2018. Depressin, Anxiety and Stress Scales (DASS-42). [online] Tersedia pada: Serenity ProgrameCBT@Home <http://serene.me.uk/tests/dass-42.pdf>. Diakses pada tanggal 15 April 2018.

TEMPO, 2017. 9 Juta Orang di Indonesia Mengalami Depresi. [online] Tersedia pada: TEMPO.CO <https://gaya.tempo.co/read/877228/9-juta-orang-di-indonesia-mengalami-depresi/full&view=ok>. Diakses pada tanggal 24 Agustus 2018.

TURBAN, E., ARONSON, J.E., LIANG, T-P., 2005. Decision Support Systems and Intelligent Systems. International Edition, ed. 7. New Jersey: Pearson Prentice-Hall Education International

VISEU, J., LEALA, R., DEJESUSA, S.N., PINTOA, P., PECHORROA, P., dan GREENGLASSB, E., 2018. Relationship Between Economic Stress Factors and Stress, Anxiety, and Depression: Moderating Role Of Social Support. Psychiatry Research, [online] 268 (2018), pp. 102, 107. Tersedia pada: <https://www.sciencedirect.com/science/article/pii/S0165178117319339>

WHO, 2017. Mental Health. Suicide Data. [online] Tersedia pada: World Health Organization < http://www.who.int/mental_health/prevention/suicide/suicideprevent/en/>. Diakses pada tanggal 13 Agustus 2018.

Diterbitkan

18-02-2020

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Model Sistem Pendukung Keputusan Kelompok untuk Penilaian Gangguan Depresii, Kecemasan dan Stress Berdasarkan DASS-42. (2020). Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(2), 219-228. https://doi.org/10.25126/jtiik.2020721052