Prediksi Penyaluran Obat Kandungan Misoprostol dengan Metode Temporal Convolutional Networks
DOI:
https://doi.org/10.25126/jtiik.2025126Kata Kunci:
Misoprostol , Drug Distribution, Temporal Convolutional Networks (TCN), ForecastingAbstrak
Aborsi ilegal di Indonesia masih menjadi permasalahan serius, terutama dengan maraknya penggunaan misoprostol yang diperjualbelikan secara ilegal. Indonesia mencatat sekitar 1,7 juta kasus aborsi per tahun, dengan 42,5 dari setiap 1.000 wanita usia subur di Pulau Jawa terlibat dalam praktik ini. Berdasarkan laporan kasus, penyalahgunaan misoprostol dapat menyebabkan komplikasi serius seperti hipertermia, hipoksia, hingga kematian akibat kegagalan multiorgan. Selain itu, ditemukan bahwa 73% obat aborsi yang dijual online mengandung misoprostol, dan lebih dari 300.000 situs penjual obat ilegal telah diblokir oleh Kementerian Komunikasi dan Informasi. Salah satu celah yang mempermudah penyalahgunaan adalah belum adanya regulasi batas kuantitas penyaluran obat tersebut. Penelitian ini menerapkan model Temporal Convolutional Networks (TCN) untuk memprediksi pola penyaluran obat misoprostol menggunakan data primer dari BPOM dengan periode 2021-2024. Hasil evaluasi menunjukkan bahwa TCN secara konsisten lebih unggul dibandingkan LSTM pada semua panjang input. TCN mencatat rata-rata penurunan NMAE sebesar 85% dan NMSE sebesar 68% dibandingkan LSTM. Pendekatan berbasis TCN ini diharapkan dapat membantu otoritas dalam meningkatkan pengawasan distribusi obat serta mendukung kebijakan pengendalian misoprostol agar tidak disalahgunakan.
Abstract
Illegal abortion in Indonesia remains a serious problem, especially with the widespread use of misoprostol, which is sold illegally. Indonesia records around 1.7 million abortion cases per year, with 42.5 out of every 1,000 women of childbearing age on the island of Java involved in this practice. According to case reports, the misuse of misoprostol can lead to serious complications such as hyperthermia, hypoxia, and even death due to multi-organ failure. Additionally, it was found that 73% of abortion drugs sold online contain misoprostol, and over 300,000 illegal drug-selling websites have been blocked by the Ministry of Communication and Information. One loophole that facilitates misuse is the lack of regulations on the quantity of the drug's distribution. This study applied the Temporal Convolutional Networks (TCN) model to predict the distribution patterns of misoprostol using primary data from the Indonesian Food and Drug Administration (BPOM) for the period 2021-2024. Evaluation results show that TCN consistently outperforms LSTM across all input lengths. TCN achieves an average reduction of 85% in NMAE and 68% in NMSE compared to LSTM. This TCN-based approach is expected to assist authorities in enhancing drug distribution oversight and supporting misoprostol control policies to prevent misuse.
Downloads
Referensi
ADHELIA, R., 2023. Kematian Maternal terkait Toksisitas Misoprostol: Satu Laporan Kasus. Jurnal Anestesi Obstetri Indonesia (JAOI), 6(2), p. 108–112.
BAI, S., KOLTER, J. Z. & KOLTUN¸VLADLEN, 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
BERGLIND, J., 2019. Temporal Convolutional Networks for Forecasting Patient Volumes in Digital Healthcare, Stockholm: KTH Royal Institute of Technology.
CASOLARO, A., CAPONE, V., IANNUZZO, G. & CAMASTRA, F., 2023. Deep Learning for Time Series Forecasting: Advances and Open Problems. Information, Volume 14, p. 598.
DAMALIANA, A. T., MUHAIMIN, A. & PRASETYA, D. A., 2024. FORECASTING THE OCCUPANCY RATE OF STAR HOTELS IN BALI. Jurnal Statistika Universitas Muhammadiyah Semarang, 12(1), pp. 24-33.
FAHRUDIN, T. M., AMBARIAWAN, R. P. & KAMISUTARA, M., 2021. Demand Forecasting of The Automobile Sales Using Least Square, Single Exponential Smoothing and Double Exponential Smoothing. PETRA INTERNATIONAL JOURNAL OF BUSINESS STUDIES, Volume 4, pp. 122-130.
FAJOU, J. & MCCARREN, A., 2021. Forecasting Gold Prices Using Temporal Convolutional Networks. Dublin, CEUR Workshop Proceedings.
GIORGIO, M. M. et al., 2020. Estimating the Incidence of Induced Abortion in Java, Indonesia, 2018.. nternational Perspectives on Sexual and Reproductive Health, Volume 46, pp. 211-222.
HASNIDA, A., KOK, M. O., & PISANI, E., 2021. Challenges in maintaining medicine quality while aiming for universal health coverage: A qualitative analysis from Indonesia. BMJ Global Health, 6(Suppl 3).
IDHOM, M. et al., 2023. Antithesis of Human Rater: Psychometric Responding to Shifts Competency Test Assessment Using Automation (AES System). Studies in Learning and Teaching, Volume 40, pp. 329-340.
IDHOM, M., FAUZI, A., TRIMONO & RIYANTOKO, P., 2023. Time Series Regression: Prediction of Electricity Consumption Based on Number of Consumers at National Electricity Supply Company. TEM Journal, Volume 12, pp. 1575-1581.
IDHOM, M. & HUDA, S. M., 2017. SISTEM INFORMASI PERAMALAN PENJUALAN DENGAN METODE LEAST SQUARE STUDI KASUS : CV. AGP COMPUTER. SCAN, Volume XII, pp. 1978-0087.
KRUGH, M., PATEL, P. & MAANI, C. V., 2019. National Center for Biotechnology Information. Dalam: MIsoprostol. s.l.:StatPearls.
KÜÇÜK, O. F. et al., 2025. Pharmaceutical stock forecasting in healthcare supply chain management: Comparative analysis of deep learning architectures. International Journal of Research in Engineering (IJRE), 7(1), pp. 43-50.
LARA-BENÍTEZ, P., CARRANZA-GARCÍA, M., LUNA-ROMERA, J. M. & RIQUELME, J. C., 2020. Temporal Convolutional Networks Applied to Energy-Related Time Series Forecasting. Applied Sciences.
LEA, C. et al., 2017. Temporal Convolutional Networks for Action Segmentation and Detection. United States, 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.
LIU, Y., DONG, H., WANG, X. & HAN, S., 2019. Time Series Prediction Based on Temporal Convolutional Network. Beijing, 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS).
LUO, D. & WANG, X., 2024. ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis. Vienna, The Twelfth International Conference on Learning Representations.
MOORE, A. M. et al., 2020. Online Abortion Drug Sales in Indonesia: A Quality of Care Assessment. Studies in Family Planning, 52(4), pp. 295-308.
MUHAIMIN, A., PRABOWO, H. & SUHARTONO, 2021. Model Selection for Forecasting Rainfall Dataset. International Journal of Data Science Engineering and Analytics (IJDASEA), Volume 1, pp. 1-10.
MUHAIMIN, A., PRASTYO, D. D. & LU, H. H. S., 2021. Forecasting with Recurrent Neural Network in Intermittent Demand Data. Noida, India, IEEE (Institute of Electrical and Electronics Engineers).
OCVIYANTI, D., & DOROTHEA, M., 2018. Abortion in Indonesia. Journal Of The Indonesian Medical Association, 68(6), pp. 213-215.
PRIMANANDA, A. & RASTIKA, D. G. B., 2021. Peredaran Ilegal Obat Aborsi Melalui Media Sosial dan. Eruditio: Indonesia Journal of Food and Drug Safety, 2(1), pp. 57-67.
SAEPUDIN, D., RABBANI, E. S., NAVIALDY, D. & ADYTIA, D., 2024. Water Level Rise Forecasting Using TCN Study Case in Surabaya Coastal Area. Jurnal Online Informatika (JOIN), 9(1), pp. 61-69.
SIDDIQUI, R., AZMAT, M., AHMED, S. & KUMMER, S., 2022. A hybrid demand forecasting model for greater forecasting accuracy: the case of the pharmaceutical industry. Supply Chain Forum: An International Journal, 23(2), pp. 124-134.
WHO, 2024. Abortion. [Online]
Available at: https://www.who.int/news-room/fact-sheets/detail/abortion
WORLD POPULATION REVIEW, 2025. Abortion Rates by Country 2024. [Online]
Available at: https://worldpopulationreview.com/country-rankings/abortion-rates-by-country
ZHU, X., NINH, A., ZHAO, H. & LIU, Z., 2021. Demand Forecasting with Supply-Chain Information and machine learning: Evidence in the Pharmaceutical Industry. Production and Operations Management, 30(9), pp. 1-22.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Teknologi Informasi dan Ilmu Komputer

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.

Artikel ini berlisensi Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Penulis yang menerbitkan di jurnal ini menyetujui ketentuan berikut:
- Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama naskah secara simultan dengan lisensi di bawah Creative Common Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) yang mengizinkan orang lain untuk berbagi pekerjaan dengan sebuah pernyataan kepenulisan pekerjaan dan penerbitan awal di jurnal ini.
- Penulis bisa memasukkan ke dalam penyusunan kontraktual tambahan terpisah untuk distribusi non ekslusif versi kaya terbitan jurnal (contoh: mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan penerbitan awalnya di jurnal ini.
- Penulis diizinkan dan didorong untuk mem-posting karya mereka online (contoh: di repositori institusional atau di website mereka) sebelum dan selama proses penyerahan, karena dapat mengarahkan ke pertukaran produktif, seperti halnya sitiran yang lebih awal dan lebih hebat dari karya yang diterbitkan. (Lihat Efek Akses Terbuka).












