Logika Fuzzy pada Robot Inverted Pendulum Beroda Dua

Penulis

Fahmizal Fahmizal, Galih Setyawan, Muhammad Arrofiq, Afrizal Mayub

Abstrak

Abstrak

Robot inverted pendulum  beroda dua (IPBD) merupakan sistem yang tidak stabil dan bersifat non-linear. Motor DC sebagai penggerak robot yang terletak pada masing-masing roda kiri dan kanan memberikan variabel gaya untuk mempertahankan kestabilan robot. Oleh karena itu diperlukan suatu kendali yang dapat menjaga keseimbangan dari robot. Makalah ini memaparkan kendali logika fuzzy dalam hal pengendali keseimbangan robot. Pada perancangan robot ini, penulis menggunakan senor inertia measurement unit (IMU) versi MPU 6050 sebagai sensor pendeteksi keseimbangan robot. Nilai setpoint sudut robot yang diberikan adalah sudut elevasi robot terhadap sumbu horizontal atau pada sumbu pitch. Selanjutnya, nilai keluaran sensor IMU dibandingkan dengan setpoint. Lebih lanjut, nilai kesalahan (error) dan nilai perubahan kesalahan (delta errror) yang dihasilkan akan digunakan sebagai masukan logika fuzzy. Hubungan relasi masukan fuzzy diselesaikan dengan aturan Mamdani. Keluaran dari logika fuzzy diselesaikan dengan perhitungan weight average (WA). Hasil dari keluaran logika fuzzy berupa nilai putaran motor kiri dan kanan yang dikendalikan dengan cara mengatur lebar pulsa sinyal pulse with modulation (PWM). Dari hasil pengujian diperoleh bahwa kendali logika fuzzy yang diaplikasikan pada robot IPBD dapat menjaga keseimbangan robot dengan mengalami osilasi pada sudut -2 hingga 2 derajat.

Kata kunci: Logika Fuzzy, Inverted Pendulum, IMU 

 

Abstract

Inverted robot pendulum two (IPBD) is an unstable system that is naturally and non-linear. The DC motor as a robot drive located on each of the left and right wheels provides a force variable to maintain the robot's stability. Therefore we need a control that can maintain the balance of the robot. This paper presents fuzzy logic control in terms of robot balance control. In designing this robot, the author uses inertia measurement unit senator (IMU) MPU 6050 version as a robot balance detection sensor. The given set of corner robot values is the robot's elevation angle to the horizontal axis or on the pitch axis. Furthermore, the value of the IMU sensor output is compared with the setpoint. Furthermore, the error value and the resulting error change value (delta errror) will be used as fuzzy logic input. The relation of fuzzy input relation is solved with Mamdani rule. The output of fuzzy logic is solved by calculating the weight average (WA). The result of fuzzy logic output is left and right motor rotation controlled by adjusting pulse signal of pulse with modulation (PWM). The experiment results obtained that fuzzy logic control applied to the robot IPBD can maintain the robot balance by having oscillations at an angle of -2 to 2 degrees.

Keywords: Fuzzy Logic, Inverted Pendulum, IMU 

Teks Lengkap:

PDF (English)

Referensi


ANDERSON, D. P. 2003. nBot, a two wheel balancing robot. http://www. geology. smu. edu/~ dpa-www/robo/nbot/ [Diakses pada 20 – 08 - 2017].

BHATKHANDE, PRANAV, & HAVENS, T. C. 2014. Real time fuzzy controller for quadrotor stability control. Fuzzy Systems (FUZZ-IEEE), IEEE International Conference, pp. 913-919. IEEE.

FAHMIZAL, KUO, CHUNG-HSIEN. 2016. Trajectory and heading tracking of a mecanum wheeled robot using fuzzy logic control. Instrumentation, Control and Automation (ICA), International Conference, pp. 54-59. IEEE.

HASSENPLUG, STEVE. 2008. Nxt programming software. NXT Programming Software.

HUANG, QIANG, & NAKAMURA, Y. 2005. Sensory reflex control for humanoid walking. IEEE Transactions on Robotics 21, no. 5, pp. 977-984. IEEE.

KUMAGAI, MASAAKI, & OCHIAI, T. 2008. Development of a robot balancing on a ball. In Control, Automation and Systems (ICCAS). International Conference, pp. 433-438. IEEE.

KUO, CHUNG-HSIEN, FAHMIZAL, & WU, S. 2016. Development of Fuzzy Logic Controllers for Controlling Bipedal Robot Locomotion on Uneven Terrains with IMU Feedbacks. Indian Journal of Science and Technology 9, no. 28.

MAMDANI, EBRAHIM H. & ASSILIAN, S. 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies 7, no. 1, pp. 1-13.

NGUYEN, HOA G., MORRELL, J., MULLENS, K., BURMEISTER, A., MILES, S., FARRINGTON, N., THOMAS, K. & DOUGLAS, W. 2004. Cage. Segway robotic mobility platform. space and naval warfare systems center san diego ca.

ROWBERG, JEFF. 2011. I2Cdevlib. MPU-6050 6-axis accelerometer/gyroscope. http://www. i2cdevlib.com/devices/mpu6050, [Diakses pada 27 – 08 - 2017].

TANG, KWOK L., & MULHOLLAND, R. J. 1987. Comparing fuzzy logic with classical controller designs. IEEE Transactions on Systems, Man, and Cybernetics 17, no. 6, pp. 1085-1087, IEEE.

TSENG, STEPHEN P., LI, W., SHENG, C., HSU, J. & CHEN, C. 2011. Motion and attitude estimation using inertial measurements with complementary filter. Control Conference (ASCC), 2011 8th Asian, pp. 863-868, IEEE.

YONEYAMA, JUN, NISHIKAWA, M., KATAYAMA, H. & ICHIKAWA, A. 2000. Output stabilization of Takagi–Sugeno fuzzy systems. Fuzzy sets and Systems 111, no. 2, pp. 253-266.

ZADEH, L. A. 1965. Fuzzy sets. Information and control 8, no. 3, pp. 338-353.




DOI: http://dx.doi.org/10.25126/jtiik.201744484