Kombinasi Logika Fuzzy dan Jaringan Syaraf Tiruan untuk Prakiraan Curah Hujan Timeseries di Area Puspo – Jawa Timur

Penulis

M. Chandra Cahyo Utomo, Wayan Firdaus Mahmudy, Syaiful Anam

Abstrak

Abstrak

Prakiraan curah hujan merupakan salah satu tanggung jawab penting yang dilakukan oleh layanan meteorologi di seluruh dunia. Permasalahan utama dalam hal analisis dan prakiraan adalah tingkat kesalahan yang semakin meningkat dari waktu ke waktu. Hal ini dapat terjadi karena kondisi ketidakpastian juga meningkat  seiring dengan perubahan musim dan iklim. Penelitian ini mencoba mengombinasikan dua metode yaitu Logika Fuzzy untuk menghadapi kondisi-kondisi yang tidak pasti dan Jaringan Syaraf Tiruan multi-layer untuk menghadapi kondisi dengan ketidakpastian yang terus meningkat. Penelitian ini juga menggunakan algoritma Particle Swarm Optimization untuk menentukan kebutuhan secara otomatis. Kebutuhan yang perlu ditentukan secara otomatis adalah bobot-bobot awal dalam Jaringan Syaraf Tiruan multi-layer sebelum akhirnya melakukan proses pelatihan algoritma. Penelitian ini menggunakan studi kasus di empat area Jawa Timur yaitu Puspo, Tutur, Tosari, dan Sumber untuk memprakirakan curah hujan di area Puspo. Data yang digunakan merupakan curah hujan timeseries yang dicatat selama 10 tahun oleh Badan Meteorologi Klimatologi dan Geofisika (BMKG). Hasil penelitian ini menunjukkan bahwa kombinasi dari Logika Fuzzy dengan Jaringan Syaraf Tiruan multi-layer mampu memberikan tingkat RMSE sebesar 2.399 dibandingkan dengan hanya menggunakan regresi linear dengan tingkat RMSE sebesar 7.211.

Kata kunci: fuzzy, hujan, hybrid, jaringan syaraf, optimasi, timeseries


Abstract

Rainfall forecasting is one of the important responsibilities that carried out by meteorological services in the worldwide. The main problem in terms of analysis and forecasting is the error rate is almost increasing from time to time. This caused by the uncertainty conditions are also increasing with the change of seasons and climate. This study tried to combine two methods of Fuzzy Logic for the problem solved of uncertain conditions and multi-layer Artificial Neural Network for the problem solved of the uncertainty that continues to increase. Particle Swarm Optimization algorithm also is used to determine the requirement automatically. The requirement that needs to be determined automatically is initial weights in multi-layer Artificial Neural Networks before the process of algorithm training. This study uses a case study in four areas of East Java that are Puspo, Tutur, Tosari, and Sumber. The data are a time series of rainfall rate that recorded in the 10 years by Badan Meteorologi Klimatologi dan Geofisika (BMKG). The results of this study indicate that the combination of Fuzzy Logic with Multi-Layer Neural Networks is capable of providing an RMSE level of 2,399 compared to only using linear regression with an RMSE level of 7,211.

Keywords: fuzzy, hybrid, neural networks, optimization, rainfall, time series

Teks Lengkap:

PDF (English)

Referensi


AHMED, A.M., BAKAR, A.A., HAMDAN, A.R., 2009. Improved SAX Time Series Data Representation based on Relative Frequency and K-Nearest Neighbor Algorithm. Presented at the 2nd Conference on Data Mining and Optimization, IEEE, Kajang, Malaysia.

ASKLANY, S.A., ELHELOW, K., YOUSSEF, I.K., ABD EL-WAHAB, M., 2011. Rainfall Events Prediction using Rule-based Fuzzy Inference System. Atmospheric Res. 101, 228–236. doi:10.1016/j.atmosres.2011.02.015

AWAN, J.A., MAQBOOL, O., 2010. Application of artificial neural networks for monsoon rainfall prediction, in: Emerging Technologies (ICET), 2010 6th International Conference on. IEEE, pp. 27–32.

FALLAH-GHALHARY, G.A., MOUSAVI-BAYGI, M., NOKHANDAN, M.H., 2009. Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System. Res. J. Environ. Sci. 3, 400–413.

FAUSETT, L.V., 1994. Fundamentals Of Neural Network: Architecture, Algorithms, and Applications, International Editions. ed. Prentice-Hall.

HAGAN, M.T., DEMUTH, H.B., BEALE, M.H., JESUS, O.D., 2014. Neural Network Design, 2nd ed. Martin Hagan.

HASAN, M., SHI, X., TSEGAYE, T., AHMED, N.U., KHAN, S.M.M., 2013. Rainfall Prediction Model Improvement by Fuzzy Set Theory. J. Water Resour. Prot. 5, 1–11. doi:10.4236/jwarp.2013.51001

HASHEM, A.A., ABU-ELHASSAN, A., KHEIRALLAH, H.N., 1990. Time series analysis of rainfall in Alexandria, Egypt, in: Geoscience and Remote Sensing Symposium, 1990. IGARSS’90.’Remote Sensing Science for the Nineties’., 10th Annual International. IEEE, pp. 441–444.

HAYKIN, S., 2005. Neural Networks. A Comprehensive Foundation, 2nd ed. Pearson Prentice Hall, Singapore.

HEATON, J.T., 2008. Introduction to Neural Networks for Java, 2nd ed. Heaton Research, Inc.

KAJORNRIT, J., WONG, K.W., FUNG, C.C., ONG, Y.S., 2014. An integrated intelligent technique for monthly rainfall time series prediction, in: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, pp. 1632–1639.

KHIDIR, A.M., ADLAN, H.H.A., BASHEIR, I.A., 2013. Neural Networks forecasting architectures for rainfall in the rain-fed Sectors in Sudan, in: Computing, Electrical and Electronics Engineering (ICCEEE), 2013 International Conference on. IEEE, pp. 700–707.

LIU, J.N., LEE, R.S., 1999. Rainfall forecasting from multiple point sources using neural networks, in: Systems, Man, and Cybernetics, 1999. IEEE SMC’99 Conference Proceedings. 1999 IEEE International Conference on. IEEE, pp. 429–434.

LONGOBARDI, A., VILLANI, P., 2009. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol. n/a-n/a. doi:10.1002/joc.2001

MISLAN, HAVILUDDIN, HARDWINARTO, S., SUMARYONO, AIPASSA, M., 2015. Rainfall Monthly Prediction Based on Artificial Neural Network: A Case Study in Tenggarong Station, East Kalimantan - Indonesia. Procedia Comput. Sci. 59, 142–151. doi:10.1016/j.procs.2015.07.528

PAPALASKARIS, T., PANAGIOTIDIS, T., PANTRAKIS, A., 2016. Stochastic Monthly Rainfall Time Series Analysis, Modeling and Forecasting in Kavala City, Greece, North-Eastern Mediterranean Basin. Procedia Eng. 162, 254–263. doi:10.1016/j.proeng.2016.11.054

PATEL, J., PAREKH, F., 2014. Forecasting Rainfall Using Adaptive Neuro-Fuzzy Inference System (ANFIS). Int. J. Appl. Innov. Eng. Manag. 3, 262–269.

PATRO, S., SAHU, K.K., 2015. Normalization: A Preprocessing Stage. ArXiv Prepr. ArXiv150306462.

PULIDO, M., MELIN, P., CASTILLO, O., 2014. Particle Swarm Optimization of Ensemble Neural Networks with Fuzzy Aggregation for Time Series Prediction of the Mexican Stock Exchange. Inf. Sci. 280, 188–204. doi:10.1016/j.ins.2014.05.006

STOCKER, T. (ED.), 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.

SVETLÍKOVÁ, D., KOMORNÍKOVÁ, M., KOHNOVÁ, S., SZOLGAY, J., HLAVČOVÁ, K., 2008. Analysis of discharge and rainfall time series in the region of the Káštorské lúky wetland in Slovakia, in: XXIVth Conference of the Danubian Countries on the Hydrological Forecasting. Conference E-Papers. Bled.

TAKAGI, T., SUGENO, M., 1985. Fuzzy identification of systems and its applications to modeling and control. Syst. Man Cybern. IEEE Trans. On 116–132.

UTOMO, M.C.C., MAHMUDY, W.F., N.D. Optimization of Sugeno Fuzzy Inference System’s Rules for Rainfall Forecasting. IAENG.

WILKS, D.S., 1998. Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol. 210, 178–191.

ZURADA, J.M., 1992. Introduction to Artificial Neural Systems. West, St. Paul.




DOI: http://dx.doi.org/10.25126/jtiik.201743299