Implementasi Weighted Product untuk memberikan Rekomendasi Prospek Pelanggan bagi Sales Marketing Berdasarkan Web Analytics

Penulis

Fajar Pradana, Fitra Abdurrachman Bachtiar, Mochammad Dearifaldi Al Ikhsan

Abstrak

Keberhasilan sebuah perusahaan dalam memasarkan produk atau jasa yang ditawarkan sangat tergantung dari kinerja marketing. Kegiatan marketing saat ini berkembang tidak hanya dilakukan secara kovensional melalui tatap muka langsung dengan pelanggan. Salah satu pemasaran yang dilakukan pada perusahaan adalah dengan digital marketing. Digital marketing menggunakan Internet dan World Wide Web untuk mendekati pelanggan. Dalam mencapai tujuan ini, perusahaan harus mengadopsi Web analytics, yang didefinisikan sebagai pengukuran, pengumpulan, analisis dan pelaporan data Internet untuk tujuan memahami dan mengoptimalkan penggunaan Web. Dengan melakukan web analytics, marketing dapat mengenali calon pelanggan prospek yang sering mengakses website perusahaan. Tidak seperti kegiatan marketing konvensional, kegiatan mengenali pengunjung website menjadi kesulitan tersendiri. Pada penelitian ini akan dilakukan penggalian data lebih dalam untuk melihat perilaku dari pengunjung website dari sebuah perusahaan dengan menggunakan metode Weighted Product. Parameter yang dipertimbangkan antara lain: jumlah kunjungan (visit), durasi kunjungan (visit length), jumlah halaman yang dilihat (pageview), jumlah satu halaman yang dilihat pada satu kali kunjungan (bounce), kategori dari traffic source (medium), dan asal dari traffic (source). Berdasarkan proses perhitungan dan pengujian validasi maka didapatkan nilai kecocokan 100%. Sehingga dapat disimpulkan sistem rekomendasi memiliki tingkat akurasi yang tinggi.

 

Abstract

 

The success of a company in marketing the product or service offered is very dependent on marketing performance. Marketing activities currently developing are not only done conventionally through face-to-face contact with customers. One of the marketing activities done by companies is digital marketing. Digital marketing uses the Internet and the World Wide Web to approach customers. In achieving this goal, companies must adopt Web analytics, which is defined as "measurement, collection, analysis and reporting of Internet data for the purpose of understanding and optimizing Web use. By doing web analytics, marketing can recognize potential customers who often access the company's website. Unlike conventional marketing activities, the activity of recognizing website visitors becomes a particular difficulty. In this study deeper data will be extracted to see the behavior of website visitors from a company using the Weighted Product method. Parameters considered include: number of visits (visit length), number of visits (pageview), number of pages viewed at one visit (bounce), category of traffic source (medium), and origin from traffic (source). Based on the comparison of the results of the decision by applying the WP and the expert achieving a 100% match value. So it can be concluded that the recommendation system has a high level of accuracy.

Teks Lengkap:

PDF

Referensi


ANALYTICS, W., 2008. Web Analytics Definitions Licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 US License. [daring] Tersedia pada: .

CHAFFEY, D. DAN PATRON, M., 2012. From web analytics to digital marketing optimization: Increasing the commercial value of digital analytics. Journal of Direct, Data and Digital Marketing Practice, 14(1), hal.30–45.

GOOGLEANALYTICS, 2019. GoogleAnalytics. [daring] Tersedia pada: [Diakses 13 Mei 2019].

JÄRVINEN, J. DAN KARJALUOTO, H., 2015. The use of Web analytics for digital marketing performance measurement. Industrial Marketing Management, [daring] 50, hal.117–127. Tersedia pada: .

KANNAN, P.K. DAN LI, H. “Alice,” 2017. Digital marketing: A framework, review and research agenda. International Journal of Research in Marketing, [daring] 34(1), hal.22–45. Tersedia pada: .

LEEDFEEDER, 2012. LeadFeader. [daring] Tersedia pada: [Diakses 20 Okt 2018].

MALCOLM, H., 2015. Cyber Monday clocks record sales as mobile sales surge. [daring] usatoday. Tersedia pada: [Diakses 27 Apr 2019].

MONAT, J.P., 2011. Industrial sales lead conversion modeling. Marketing Intelligence and Planning, 29(2), hal.178–194.

PHILLIPS, E., 2015. Retailers scale up online sales distribution networks. The Wall Street Journal November 17, 2015. [daring] Tersedia pada: [Diakses 27 Apr 2019].

RAO, L., 2015. Online Shoppers Spent $4.45 Billion On Black Friday And Thanksgiving | Fortune.com. [daring] Fortune. Tersedia pada: [Diakses 27 Apr 2019].

ROTHMAN, D., 2014. Lead Generation for Dummies. For Dummies.

SAVITHA, K. DAN CHANDRASEKAR, C., 2011. Vertical Handover decision schemes using SAW and WPM for Network selection in Heterogeneous Wireless Networks. Global Journal of Computer Science and Technology, [daring] 11(9), hal.19–24. Tersedia pada: .

SETYAWAN, A., ARINI, F.Y. DAN AKHLIS, I., 2017. Comparative Analysis of Simple Additive Weighting Method and Weighted Product Method to New Employee Recruitment Decision Support System (DSS) at PT. Warta Media Nusantara. Scientific Journal of Informatics, 4(1), hal.34–42.

WANG, M., LIU, S., WANG, S. DAN LAI, K.K., 2010. A weighted product method for bidding strategies in multi-attribute auctions. Journal of Systems Science and Complexity, 23(1), hal.194–208




DOI: http://dx.doi.org/10.25126/jtiik.2020702586