Optimasi Penjadwalan Pengerjaan Software Pada Software House Dengan Flow-Shop Problem Menggunakan Artificial Bee Colony

Penulis

Muhammad Fhadli, Daneswara Jauhari, Dhimas Anjar Prabowo, Anang Hanafi, Aryeswara Sunaryo, Imam Cholissodin

Abstrak

Abstrak

Penelitian ini mengusulkan sebuah implementasi terkait optimasi penjadwalan pengerjaan software pada software house dengan Flow-Shop Problem (FSP) menggunakan algoritma Artificial Bee Colony (ABC). Dimana dalam FSP dibutuhkan suatu solusi untuk menyelesaikan suatu job/task dengan meminimalkan total cost yang dikeluarkan. Terdapat constraint yang perlu diperhatikan dalam objek permasalahan penelitian ini, yaitu lama waktu penyelesaian keseluruhan projek software yang tidak pasti. Dalam penelitian ini akan disusun sebuah representasi solusi yaitu berupa urutan pengerjaan projek dengan total waktu pengerjaan yang minimum. Pengujian akan dilakukan dengan tiga kali percobaan untuk setiap kondisi uji coba, yaitu uji coba batas parameter iterasi dan uji coba batas parameter limit. Dari hasil pengujian didapatkan bahwa penggunaan algoritma yang dibahas dalam penelitian ini bisa mengurangi waktu pengerjaan jika jumlah iterasi dan jumlah colony diperbesar.

Kata kunci: optimasi, flow-shop problem, artificial bee colony, swarm intelligence, meta-heuristik.


Abstract

This research proposed an implementation related to software execution scheduling process at a software house with Flow-Shop Problem (FSP) using Artificial Bee Colony (ABC) algorithm. Which in FSP required a solution to complete some job/task along with its overall cost at a minimum. There is a constraint that should be kept to note in this research, that is the uncertainty completion time of its jobs. In this research, we will present a solution that is a sequence order of project execution with its overall completion time at a minimum. An experiment will be performed with 3 attempts on each experiment conditions, that is an experiment of iteration parameter and experiment of limit parameter. From this experiment, we concluded that the use of this algorithm explained in this paper can reduce project execution time if we increase the value of total iteration and total colony.

Keywords: optimization, flow-shop problem, artificial bee colony, swarm intelligence, meta-heuristic.

Teks Lengkap:

PDF (English)

Referensi


CHOLISSODIN, I. (2016). Modul Swarm Intelligence – Semester Ganjil 2016-2017.

GAO, KAI ZHOU. dkk., 2016. Artificial bee colony algorithm for scheduling and rescheduling fuzzy flexible job shop problem with new job insertion. Knowledge-Based Systems 109 (2016) 1-16.

KARTHIKEYAN, A., MANIKANDAN, K. & SOMASUNDARAM, P., 2016. Economic Dispatch of Microgrid with Smart Energy Storage Systems using Particle Swarm Optimization. 2016 International Conference on Computation of Power, Energy Information and Communication (ICCPEIC).

KHORASANIAN, D. & MOSLEHI, G., 2017. Two-machine flow shop scheduling problem with blocking, multi-task flexibility of the first machine, and preemption. Computers and Operation Research, 79(August 2016), pp.94–108. Available at: http://dx.doi.org/10.1016/j.cor.2016.09.023.

MCCONNELL, S., Software Estimation, Demystifying the Black Art. Washington, 2006.




DOI: http://dx.doi.org/10.25126/jtiik.201634226