Penerapan Metode Two Step Cluster dalam Analisis Menu Engineering pada Usaha Kuliner

Penulis

Nina Setiyawati, Dwi Hosanna Bangkalang

Abstrak

Dalam usaha kuliner, analisis menu perlu dilakukan untuk melihat keseimbangan antara food cost, harga menu, popularitas item, juga pertimbangan finansial dan pemasaran. Menu engineering merupakan metodologi untuk mengelompokkan menu berdasar pada margin kontribusi dan popularitas. Pada penelitian ini dilakukan analisis menu engineering pada suatu Usaha Mikro Kecil dan Menengah (UMKM) di Kota Salatiga yang bergerak di bidang kuliner menggunakan Two-Step Cluster yang dapat menggali cluster alami sesuai dengan kumpulan data menu yang ada sehingga akan ditemukan jumlah cluster yang optimal. Two-Step Cluster adalah metode yang dapat menangani variabel kategori dan kontinu, oleh karena itu dilakukanlah adaptasi model menu engineering yang diusulkan Kasavana dan Smith (1982) dengan menambahkan variabel category, sehingga dengan menggunakan Two-Step Cluster dapat dilihat mayoritas kategori menu yang menjadi anggota pada setiap cluster. Adaptasi juga dilakukan dalam kelompok variabel kontinu, yaitu dengan menambahkan variabel revenue yang digunakan untuk perbandingan pada hasil cluster. Dengan indikator Schwarz's Bayesian Information Criterion (BIC) dihasilkanlah jumlah cluster optimal yaitu 4 cluster dengan anggota paling sedikit pada cluster “popularitas tinggi dan mempunyai margin kontribusi yang berada di atas rata-rata”. Pengujian clustering dilakukan dengan menggunakan metode Silhoutte dan menunjukkan kualitas cluster yang dihasilkan memiliki nilai Silhoutte yang besar yaitu 0,7. Hal ini membuktikan cluster-cluster yang terbentuk telah terklasterisasi dengan baik. Adapun manfaat dari penelitian ini adalah didapatkannya rekomendasi kebijakan baru untuk setiap cluster yang dihasilkan sehingga dapat digunakan  pemilik UMKM dalam upaya peningkatan revenue usaha.

 

Abstract

In culinary business, menu analysis is needed to see the balance of food cost, menu item prices, item popularity, as well as the financial and marketing considerations. Menu engineering is a method to group menu according to the contribution margin and popularity. The present study conducts a menu analysis to a Small Medium Enterprise (SME) in culinary business in Salatiga by implementing Two-Step Cluster analysis. It aims to find the natural clusters based on the existing menu data set to discover the optimal cluster number. Two-Step Cluster is a method that can be used to process categorical and continuous variables. In this study, the menu engineering model by Kasavana and Smith (1982) was adapted by adding the categorical variable. Therefore, by using the Two-Step Cluster method, the majority of menu category in each cluster can be seen. This adaption was also implemented in the continuous variable group by adding the revenue variable used for the comparison of the cluster results. With Schwarz's Bayesian Information Criterion (BIC) indicator, the results of the study show there are four clusters, in which “the highest popularity and the contribution margin above the average” cluster has the least members. Using Silhouette method, clustering testing was conducted, indicating the cluster quality result with 0,7 Silhouette value. As for the benefit of the study, new strategic recommendations can be generated for the resulted clusters based on which SME owners can improve their revenue.

 


Teks Lengkap:

PDF

Referensi


ADIATMA, D., ANDRIATNA, W., SUDONO, A., 2014. Analisis Perbaikan Menu Unpopular Di Restoran Dapur Sunda Di Kota Jakarta. Gastronomy Tourism, 1 (1), hal. 35-48. [online] Tersedia di: http://ejournal.upi.edu/index.php/gastur/article/view/4654. [Diakses 11 Februari 2019]

ATKINSON, H., JONES, P., 1994. Menu Engineering: Managing the Foodservice Micro-Marketing Mix. Journal of Restaurant and Foodservice Marketing, 1 (1), pp. 37-55.

COHEN, E., MESIKA, R., SCHWARTZ, Z., 1998. A Multidimensional Approach to Menu Sales Mix Analysis, Praxis, 2 (1), pp. 130–144.

HAYES, D.K., HUFFMANN, L., 1985. Menu Analysis: A Better Way. The Cornell Hotel and Restaurant Administration Quarterly, 25 (4), pp. 64–70.

LEBRUTO, S.M., QUAIN, W.J., ASHLEY, R.A., 1995. Menu engineering: A model including labor, Hospitality Review, Vol.13, Issue 1, pp. 41-49. [online] Tersedia di: http://digitalcommons.fiu.edu/hospitalityreview/vol13/iss1/5 [Diakses 10 Januari 2019].

LI, G., SUN, L., 2018. Characterizing Heterogeneity in Drivers’ Merging Maneuvers Using Two-Step Cluster Analysis. Journal of Advanced Transportation. [online] Tersedia di: https://www.hindawi.com/journals/jat/2018/5604375/ [Diakses 2 Februari 2019].

LINASSI, R., ALBERTON, A., MARINHO, S. V., 2016. "Menu Engineering and Activity-Based Costing: An Improved Method of Menu Planning", International Journal of Contemporary Hospitality Management, 28 (7), pp. 1417-1440.

KASAVANA, M.L., SMITH, D. I., SCHMIDGALL, R.S., 1990. Menu Engineering : A Practical Guide to Menu Analysis. Rev ed. Okemos, Mich. : Hospitality Pub.

MOOI, E., SARSTEDT, M.2011. A Concise Guide to Market Research. Springer:Heidelberg, Germany,pp. 237–284.

OZDEMIR,B., CALISKAN, O., 2014. A Review of Literature on Restaurant Menus: Specifying The Managerial Issues. International Journal of Gastronomy and Food Science.

RAAB, C., MAYER, K., 2007. Menu Engineering and Activity‐Based Costing-Can They Work Together in A Restaurant?", International Journal of Contemporary Hospitality Management, 19 (1), pp.43-52.

ŞCHIOPU, D., 2010. Applying TwoStep Cluster Analysis for Identifying Bank Customers’ Profile. Buletinul Universitatii Petrol-Gaze din Ploiesti, Seria Stiinte Economice, LXII(3), pp. 66-75. [online] Tersedia di: http://www.upg-bulletin-se.ro/archive/2010-3/7.%20Schiopu.pdf [Diakses 11 Februari 2019]

SEYITOGLU, F., 2016. A Conceptual Study on Menu Planning and The Selection of Menu Items. Proceedings of The 7th MAC 2016, pp. 183-191.

SORIANO, A., KOZUSZNIK, M.W., PEIRO, J.M., 2018. From Office Environmental Stressors to Work Performance: The Role of Work Patterns. International Journal of Environmental Research and Public Health, 15(8). [online] Tersedia di: https://www.mdpi.com/1660-4601/15/8/1633 [Diakses 7 Maret 2019].

SPSS, 2001. The SPSS TwoStep Cluster Component: A Scalable Component Enabling More Efficient Customer Segmentation. SPSS White paper-Technical Report. SPSS, Inc., USA. Tersedia di: https://www.spss.ch/upload/1122644952_The%20SPSS%20TwoStep%20Cluster%20Component.pdf. [Diakses 1 Maret 2019].

TAYLOR, J.J., BROWN, D.M., 2007. Menu Analysis: A Review of Techniques and Approaches. Hospitality Review, 25 (2), pp. 74-82. Tersedia di: https://digitalcommons.fiu.edu/hospitalityreview/vol25/iss2/6 [Diakses 10 Maret 2019].

TOM, M., ANNARAUD, K., 2017. A fuzzy multi-criteria decision making model for menu engineering. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, pp.1-6.

TUMBAZ, M. N. M., & MOĞULKOÇ, H.T., 2018. Profiling Energy Efficiency tendency: A case for Turkish Households. Energy Policy, Elsevier, 119(C), pp. 441-448.

WU, X., ZHAN, F. B., ZHANG, K., DENG, Q., 2016. Application of a Two-Step Cluster Analysis and The Apriori Algorithm to Classify the Deformation States of Two Typical Colluvial Landslides in the Three Gorges, China" Environmental Earth Sciences, 75 (2), pp. 146.

ZENINA, N., Romanovs, A., Merkuryev, Y., 2015. Transport Simulation Model Calibration with Two-Step Cluster Analysis Procedure. Information Technology and Management Science, 18 (1), pp. 49-56. [online] Tersedia di: https://ortus.rtu.lv/science/en/publications/22120-Transport+Simulation+Model+Calibration+with+Two-Step+Cluster+Analysis+Procedure [Diakses 12 Januari 2019]




DOI: http://dx.doi.org/10.25126/jtiik.2020722012