Sistem Monitoring Trafo Distribusi PT.PLN (Persero) berbasi IoT

Penulis

Budi Eko Prasetyo, Widhy Hayuhardhika Nugraha Putra, Dahnial Syauqy, Adhitya Bhawiyuga, Sigi Syah Wibowo, Ferdian Ronilaya, Indrazno Siradjuddin, Supriatna Adhisuwignjo

Abstrak

Paper ini memperkenalkan sebuah sistem manajemen Trafo Distribusi jaringan tegangan rendah (JTR) milik PT. PLN (Persero) yang disebut dengan Distributed Transformer Management System (DTMS). Trafo Distribusi merupakan asset strategis PT. PLN (Persero) karena keberlangsungan umur trafo distribusi adalah sangat penting dalam menjaga layanan penyediaan energi kelistrikan kepada pelanggan, dan sebagai sumber pendapatan utama.  Jumlah aset yang besar dan luasnya jangkauan pemasangan trafo distribusi menuntut PT. PLN (Persero) berinvestasi lebih untuk memantau kondisi Trafo agar tidak terjadi kerusakan dan mengurangi biaya perawatan. Oleh karena itu peran teknologi informasi saat ini menjadi salah satu investasi yang paling feasible bagi PT. PLN (Persero) dalam menjaga performa aset strategis tersebut. DTMS yang dibangun terdiri atas: (1) perangkat embedded system yang berfungsi untuk melakukan pengukuran dan pengiriman data, (2) perangkat lunak Web Service yang berfungsi untuk menerima data dari embedded system dan (3) perangkat lunak berbasis web untuk penyajian data dan pengelolaan data untuk menjadi sebuah Decision Support System (DSS). DTMS ini dibangun untuk memberikan fungsi peringatan dini terhadap anomali parameter trafo seperti overload, overvoltage dan black out events. Disamping itu, suhu operasi trafo juga menjadi parameter yang menggambarkan kondisi trafo dalam status aman, peringatan atau berbahaya. Embedded system yang dibangun akan mengukur kondisi trafo, kemudian dengan menggunakan protokol komunikasi RF 2,4 GHz dan GPRS, embedded system akan menampung dan mengirim data ke server melalui protokol HTTPS dengan antarmuka pemrograman yang disusun menggunakan format JSON. Setelah mendapatkan data, DTMS akan melakukan perhitungan untuk mendapatkan rekomendasi optimalisasi trafo berupa penyeimbangan, perawatan atau peningkatan daya.

 

Abstract

This paper introduces a Low Voltage Distribution Transformer (JTR) Management owned by PT. PLN (Persero) which is also called the Distributed Transformer Management System (DTMS). Distribution transformer is a strategic asset of PT. PLN (Persero) because it’s lifecycle is highly important for PT. PLN (Persero) primarily in delivering electrical energy to customers, and of course as a main source of PT. PLN’s revenue. The large amount of assets and the broad range of installation of distribution transformers requires PT. PLN (Persero) invests more to monitor and maintain the condition of the Trafo in order to avoid unplanned damage and reduce the cost of unplanned maintenance. Therefore the role of information technology is currently one of the most feasible investment for PT. PLN (Persero) in maintaining the performance of this strategic assets. The DTMS consists of: (1) embedded system devices for data measurement and transmission, (2) Web Services software for receiving data from embedded systems, and (3) Web-based software for data presentation and data management for Decision Support System (DSS) purpose. The DTMS is built to provide early warning functionality to the transformer parameter anomalies such as overload, overvoltage and blackout events. In addition, the transformer operating temperature is also an important parameter that describes the condition of the transformer in safe state, warning state or danger state. The embedded system will measure the transformer's general conditions, then using the 2.4 GHz RF communications protocol and GPRS, then it will collect and transfer data to the server via the HTTPS protocol with a programming interface compiled using the JSON format. After getting the data, DTMS will do the calculation to get recommendation of transformer optimization such as balancing, maintenance or power uprating.


Teks Lengkap:

PDF

Referensi


ABU-ELANIEN, A. E. & SALAMA, M. M., 2010. Asset management techniques for transformers. Electric power systems research, 80(4), pp. 456-464.

ATZORI, L., LERA, A. & MORABITO, G., 2010. The Internet of Things: A survey. Computer networks, 54(15), pp. 2787-2805.

BARTLETT, S., 2002. Asset Management in a de-regulated environment. Paris, on behalf of the CIGRE Joint Task Force 23.18 and Australian.

GERMAN, M. O. et al., 2014. Power asset management: Methods and experiences in Colombian power system. s.l., Transmission & Distribution Conference and Exposition-Latin America (PES T&D-LA).

Institute Of Electrical And Electronics Engineers, 1980. IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications: IEEE Std 446-1980 (revision of IEEE Std 446-1974).. s.l.:Institute of Electrical and Electronics Engineers, distributed, 1980.

KADIR, A., 2014. Pengenalan Sistem Informasi. Edisi Revisi ed. s.l.:Penerbit Andi.

KHUNTIA, S. R., RUEDA, J. L., BOUWMAN, S. & MEIJDEN, V. D., 2015. Classification, domains and risk assessment in asset management: A literature study. s.l., Power Engineering Conference (UPEC), 2015 50th International Universities.

SUWANASRI, C. & SUWANASRI, T., 2009. Statistical method with efficient IT support for power transformer asset management. s.l., 6th International Conference in Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.

ZHANG, J., IANNUCCI, B., HENNESSY, M. GOPAL, K. XIAO, S. KUMAR, S., PFEFFER, D., ALJEDIA, B., REN, Y, GRISS, M., ROSENBERG, S., CAO, J., ROWE, A. 2013. Sensor Data as a Service -- A Federated Platform for Mobile Data-centric Service Development and Sharing. Santa Clara, CA, USA, IEEE.