Sistem Pengambilan Keputusan dalam Penentuan Kelas Jabatan Fungsional Umum (JFU) Pegawai Negeri Sipil (PNS) Menggunakan Metode Multi Rough Set dan Fuzzifikasi

Penulis

Asri Yulianti

Abstrak

Seorang Pegawai Negeri Sipil (PNS) pada instansi pemerintah, dituntut harus memiliki kompetensi atau kemampuan untuk dapat melakukan pekerjaan secara efektif dan efisien sesuai dengan bidang dan lingkup pekerjaannya. Pada kenyataannya, proses penentuan kompetensi dan kelas jabatan sangat berpengaruh bagi proses penempatan Jejabat Fungsional Umum (JFU) seorang Pegawai Negeri Sipil dan karena proses tersebut selama inimasih dilakukan secara manual, maka waktu yang dibutuhkan cukup lama dan hasil yang diperoleh belum tentu akurat sesuai dengan kompetensi yang dimiliki. Pada penelitian ini, Metode Multi Rough Set digunakan dalam penentuan klasifikasi kompetensi dan kelas jabatan bagi PNS yang belum diketahui kompetensinya maupun sebagai bahan evaluasi kinerja pegawai yang telah menduduki suatu jabatan. Metode Multi Rough Set  ini dilakukan dengan cara membagi data set menjadi beberapa data set dengan atribut yang sejenis. Berdasarkan penelitian yang telah dilakukan, dapat diketahui bahwa Metode Multi Rough Set sebagai metode klasifikasi yang baik (Good Classifier) dalam pengambilan keputusan klasifikasi kompetensi pegawai dalam Jabatan Fungsional Umum, karena berdasarkan hasil kurva pada Receiver Operating Characteristic (ROC) mempunyai luas daerah di bawah kurva sebesar 0,866, selain itu rata-rata error dari hasil klasifikasi dengan Metode Multi Rough Set yang digabungkan dengan pengambilan keputusan melalui fuzzifikasi meningkat secara signifikan dibandingkan dengan Metode Single Rough Set yaitu dari 28,75% menjadi 0% untuk hasil yang tidak terklasifikasi.

Abstract

A Civil Servant in government agencies is required to have the competency or ability to be able to perform work effectively and efficiently in accordance with the field and scope of work. In fact, the process of determining the competency and class of works is very influential for the process of placement of General Functional Works of a Civil Servant. However, the process takes a long time because it is still done manually.  Moreover, the obtained results are not necessarily accurate in accordance with the competence which is owned by the civil servants. In this study, Multi Rough Set Method is used for determining unknown civil servants competency classification and class position, or as civil servants performance evaluation. The multi Rough Set method is applied by dividing the data set into several similar attributes data sets. Based on the research that has been conducted, it can be seen that the Multi Rough Set Method is a good classifier method in decision making of employee competency classification in General Functional Work. It is because based on the Receiver Operating Characteristic (ROC) curve results, the area under the curve reaches 0.866. Besides, the average error from the results of the classification using the combination of Multi Rough Set Method and fuzzification increased significantly compared to the Single Rough Set Method which goes from 28.75% to 0% for unclassified results.


Teks Lengkap:

PDF

Referensi


A. ROJARATH, W. S. a. C. P.-i., 2016. Improved ensemble learning for classification techniques based on majority voting. Beijing, s.n., pp. 107-110.

ANTONIUS RAHMAT C., Y. L., 2015. Implementation of labeling crowdsourced web-based system using weighted majority voting method (Implementasi system crowdsourced labelling berbasis web dengan metode weighted majority voting). ULTIMA Infosys Information System Journal (Ultima Infosys Jurnal Sistem Informasi), December, VI (2), pp. 76-82.

ASHARI, E. T., 2011. Regulation of the Head of Human Resources Number 13 Year 2011 about Guidelines for preparation of job competency (Peraturan Kepala Badan Kepegawaian Nomor 13 Tahun 2011 tentang Pedoman Penyusunan Kompetensi Jabatan). Jakarta: National Civil Service Agency (Badan Kepegawaian Negara).

CARTER, J., 2016. ROC-in along: Evaluation and interpretation of receiver operating curves. Surgery, Elsevier, June, Volume 159, p. 6.

DING, S. D. a. A., 2011. A method for data classification based on Rough Sets Theory. Yichang, 2011 International Conference on Electrical and Control Engineering, pp. 4261-4264.

Forum, E. W., 2016. https://reports.weforum.org/. [Online]

Available at: https://reports.weforum.org

[Diakses 30 Maret 2016].

HAN, J., 2012. Data mining : Concepts and Techniques. 3rd ed. penyunt. 225 Wyman Street, Waltham, MA 02451: Morgan Kaufmann Publishers.

James, G., 2017. [Online]

Available at: web.stanford.edu/~hastie/THESES

N. Z. FANANI, U. D. R. S. S. a. M. H. P., 2016. Multi Attribute Decision Making Model Using Multi Rough Set: Case Study Classi fication of Anger Intensity of Javanese Woman. Budapest, 2016 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), pp. 1-5.

NUR SYAM, P. D. H. M., 2015. Dictionary of Job Competency (Kamus Kompetensi Jabatan). Jakarta: The General Secretariat of the Ministry of Religious Affairs of the Indonesian Republic (Sekretariat Jenderal Kementerian Agama Republik Indonesia).

S. GRECO, B. M. a. R. S., 2001. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, February, 129 no.1(1), p. 1–47.

SANTOSA, B., 2007. Data Mining, Data Utilization Techniques for Business Purposes, Techniques & Applications (Data Mining, Teknik Pemanfaatan Data untuk Keperluan Bisnis, Teknik & Aplikasinya). Yogyakarta: Graha Ilmu.

SLEZAKk, D., 2007. Rough Sets and Few-Objects-Many-Attributes Problem: The Case Study of Analysis of Gene Expression Data Sets. Jeju City, s.n., pp. pp. 437-442.

SPENCER, L. M. a. S. M. S., 1993. Competence Work: Model for Superior Performance, s.l.: John Wiley and Sons. Inc.

SURAZ, Z., 2004. An Introduction to Rough Set Theory and Its Applications A Tutorial, Cairo, Egypt: ICENCO.

VENKATESWARA REDDY E., S. G. V. R. E. S. a. S. S. S., 2011. Rough Set Anlaysis for Uncertain Data Classification. India, s.n., pp. 22 - 29.

ZURNALI, C., 2009. Learning Organization, Competency, Organizational Commitment, dan Customer Orientation : Knowledge Worker – Kerangka Riset Manajemen Sumberdaya Manusia di Masa Depan. Bandung: Unpad Press.

HARI PURNOMO SRI KUSUMADEWI, Aplikasi Logika Fuzzy untuk Pendukung Keputusan , 2nd ed. Yogyakarta, Indonesia: Graha Ilmu, 2010.

J. CARTER, "ROC-in along: evaluation and interpretation of receiver operating curves," Surgery, Elsevier, vol. 159, p. 6, June 2016.




DOI: http://dx.doi.org/10.25126/jtiik.2019611230