Kendali Otomatis dengan Memanfaatkan Kamera CCTV Menggunakan Metode Pengembangan Kalman Filter

Penulis

Adi Suheryadi, Azran Budi Arief, Darsih Darsih

Abstrak

Krisis energi telah menjadi isu penting dalam kurun waktu belakangan ini. Hal ini upaya yang mendorong penghematan energi menjadi masalah yang mendasar. Upaya penghematan energi dilakukan secara bersama oleh Pemerintah pusat, Pemerintah Daerah, Pengusaha dan Masyarakat. Disisi lain peningkatan fasilitas umum yang diberikan oleh pemerintah maupun perusahaan mendorong konsumsi daya listrik yang berlebihan, karena kurang optimalnya penggunaan peralatan listrik pada fasilitas umum tersebut. Penelitian ini menggunakan teknologi pengolahan citra digital dalam pendeteksian dan pelacakan posisi objek menggunakan metode modifikasi kalman filter, dan menerapkan sistem kendali otomatis embedded pada perangkat elektronik. Sistem kendali otomatis yang dibuat bekerja dengan memanfaatkan informasi yang didapat dari kamera CCTV. Informasi yang diolah berupa posisi objek dari peralatan elektronik, dimana perangkat elektronik hanya bekerja pada saat objek berada pada posisi yang ditentukan sebelumnya, sehingga hal ini dapat mengoptimalkan penggunaan daya dari peralatan elektronik tersebut. Nilai recall yang didapat dari penelitian ini adalah sekitar 95.65%.

 

Abstract

 

The energy crisis has been an important issue in recent times. This effort that encourages energy saving becomes a fundamental problem. Energy saving efforts shall be undertaken jointly by the central Government, Regional Government, Entrepreneurs and Communities. On the other hand, the increase of public facilities provided by the government and companies encourages excessive consumption of electric power, due to less optimal use of electrical equipment in public facilities. This research uses digital image processing technology in the detection and tracking of object position using modification method of filter kalman, and apply automatic embedded control system in electronic device. Automated control systems are made to work by utilizing information obtained from CCTV cameras. The information processed is the position of the object of electronic equipment, where the electronic device only works when the object is in a predetermined position, so that it can optimize the power usage of the electronic equipment. Recall value of this study about 95.65%.

Kata Kunci


Object Detection; Object Tracking; Sistem Kendali; Sistem Embedded; CCTV

Teks Lengkap:

PDF

Referensi


EAMTHANAKUL, B., KETCHAM, M., & CHUMUANG, N. (2017). The Traffic Congestion Investigating System by Image Processing from CCTV Camera. International Conference on Digital Arts, Media and Technology (ICDAMT) (pp. 240 - 245). Chiang Mai, Thailand: IEEE.

HAMED TABKHI, R. B. (2013). Algorithm and Architecture Co-Design of Mixture of Gaussian (MoG) Background Subtraction for Embedded Vision. Asilomar Conference on Signals, Systems and Computers. Grove: IEEE.

ILLANGARATHNE, N. C., & CHINTHAKA, M. K. (2014). Object sensing, tracking and reconstructing using Extended Kalman Filter algorithm. 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1 - 6). Nakhon Ratchasima, Thailand: IEEE.

J. DAVIS, M. G. (2006). The Relationship between Precision-Recall and ROC Curves. Proc. Int’l Conf. Machine Learning (pp. 233-240). IEEE.

JEONG, J.-M., YOON, T.-S., & PARK, J.-B. (2014). Kalman filter based multiple objects detection-tracking algorithm robust to occlusion. Proceedings of the SICE Annual Conference (SICE) (pp. 941 - 946 ). Sapporo, Japan: IEEE.

NANDASHRI D, S. P. (2015). An Efficient Tracking of Multi Object Visual Motion using Hungarian Method. International Journal of Engineering Research & Technology (IJERT), 1307-1310.

SENAN, M. F., ABDULLAH, S. N., KHARUDIN, W. M., & SAUPI, N. A. (2017). CCTV quality assessment for forensics facial recognition analysis. 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence (pp. 649 - 655). Noida, India: IEEE.

SMEULDERS, A. W., CHU, D. M., CUCCHIARA, R., CALDERARA, S., DEHGHAN, A., & SHAH, M. (2014). Visual Tracking: An Experimental Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence Volume: 36, Issue: 7,, 1442 - 1468.

TOMASUA, S., TRIYANTO, D., & NIRMALA, I. (2016). Sistem Kendali Dan Monitoring Penggunaan Peralatan Listrik Di Rumah Menggunakan Raspberry Pi Dan Web Service. Jurnal Coding Sistem Komputer Untan, Volume 4, No. 3, 85 -96.

WELCH, G. B. (2001). An Introduction to the Kalman Filter. SIGGRAPH .




DOI: http://dx.doi.org/10.25126/jtiik.2018561150