Identifikasi Penyakit pada Daun Tebu dengan Gray Level Co-Occurrence Matrix dan Color Moments

Penulis

Ratih Kartika Dewi, R.V. Hari Ginardi

Abstrak

Abstrak

Karat dan mosaik adalah penyakit pada tebu yang menyerang tebu di Indonesia dan menimbulkan kerugian. Teknologi informasi untuk deteksi penyakit tebu diperlukan dalam menunjang peningkatan produksi tebu yang dapat menghasilkan panen optimal. Penelitian yang berkembang dalam identifikasi penyakit tanaman melalui identifikasi citra digital daun belum ada yang khusus membahas tebu, tetapi mengenai penyakit tanaman secara umum. Penelitian ini membangun sistem identifikasi penyakit pada daun tebu melalui identifikasi citra digital daun dengan pemilihan fitur tekstur dan warna melalui gray level co-occurrence matrix (GLCM) dan color moments. Tahap awal penelitian adalah pengumpulan data citra daun tebu berpenyakit dari survei lapangan. Tahap selanjutnya adalah pre-processing citra untuk dapat diolah ke tahap selanjutnya yaitu ekstraksi fitur. Ekstraksi fitur tekstur dilakukan dengan gray level co-occurrence matrix (GLCM) dan ekstraksi fitur warna dengan color moments. Klasifikasi dilakukan berdasarkan fitur yang telah diekstraksi sebelumnya. Penelitian ini menggunakan metode klasifikasi support vector machine (SVM). Pengujian dilakukan untuk mengetahui fitur yang kemunculannya menyebabkan perubahan dalam hasil klasifikasi dengan 4 skenario meliputi penghapusan fitur bentuk, pemilihan fitur tekstur, pemilihan fitur warna, dan kombinasi fitur tekstur dan warna. Kombinasi fitur tekstur dengan GLCM correlation, energy,  homogeneity dan variance bersama fitur warna dengan color moments 1,2 dan 3 yang diuji pada skenario 4 merupakan kombinasi fitur yang direkomendasikan untuk identifikasi penyakit pada daun tebu dengan akurasi 97%.

Kata kunci: ekstraksi fitur, penyakit tebu, citra daun, GLCM, dan color moments.

Abstract

Mosaic and rust are sugarcane diseases that happen in Indonesia and has considerable economic impact. Information technology for sugarcane disease detection is useful in supporting optimal sugarcane production. Most of current researches are about plant disease identification in general. There is no specific research about identification of sugarcane disease. This research proposes a sugarcane disease identification from sugarcane leaf image with gray level co-occurrence matrix (GLCM) and color moments. This research begins with collecting data from field survey. After sugarcane leaf images are captured through a field survey, they are pre-processed in order to be used in the features extraction step. Extracted features from these images are texture and color. Texture feature extraction is conducted by GLCM while color feature extraction is conducted by color moments. Classification method which is used in this research is support vector machine (SVM). Test conducted to find distinctive feature that has a significant impact in classification, there are 4 scenario to test the effects in deletion of shape feature, selection of texture and color feature, and also combination of texture and color feature. Texture feature with GLCM correlation, energy,  homogeneity and variance combined with color moments 1, 2 and 3 for color feature extraction in 4th scenario is an appropriate feature for identification of sugarcane leaf disease with 97% classification accuracy.

Keywords: feature extraction, sugarcane disease, leaf image, GLCM and color moments.

Teks Lengkap:

PDF (English)

Referensi


ABDEL-RAHMAN, E. M., AND F. B. AHMED. 2008. "The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature." International Journal of Remote Sensing 29.13: 3753-3767.

ALBREGTSEN, FRITZ. 1995. "Statistical texture measures computed from gray level coocurrence matrices." Image Processing Laboratory, Department of Informatics, University of Oslo :1-14.

ASRAF, H. MUHAMMAD, M. T. NOORITAWATI, AND M. S. B. RIZAM. 2012. "A Comparative Study in Kernel-Based Support vector machine of Oil Palm Leaves Nutrient Disease." Procedia Engineering 41 : 1353-1359.

CAMARGO, A., AND J. S. SMITH. 2009. "An image-processing based algorithm to automatically identify plant disease visual symptoms." Biosystems Engineering 102.1: 9-21.

CAMARGO, A., AND J. S. SMITH. 2009. "Image pattern classification for the identification of disease causing agents in plants." Computers and Electronics in Agriculture 66.2: 121-125.

COMSTOCK, J.C AND R. A. GILBERT. 2009.“Sugarcane Mosaik Virus Disease”. University of Florida: Florida Sugarcane Handbook.

ELISH, KARIM O., AND MAHMOUD O. ELISH. 2008. "Predicting defect-prone software modules using support vector machines." Journal of Systems and Software 81.5 : 649-660.

FITRIAWAN, ARIES, ET AL. 2013. "Classification System for Jamu Efficacy based on Formula using Support vector Machine". International Conference on Advanced Computer Science and Information Systems (ICACSIS): 291-295

GRISHAM, MICHAEL P., RICHARD M. JOHNSON, AND PAUL V. ZIMBA. 2010. "DetectingSugarcane yellow leaf virusinfection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes." Journal of virological methods 167.2 : 140-145.

HARALICK, ROBERT M., KHARTIKEYAN SHANMUNGAN, AND IT’S HAK DINSTEIN. 1973. "Textural features for image classification." Systems, Man and Cybernetics, IEEE Transactions on 6 : 610-621.

HERDIYENI, YENI, AND MAYANDA MEGA SANTONI. 2012. "Combination of morphological, Local Binary Pattern Variance and color moments features for Indonesian medicinal plants identification." Advanced Computer Science and Information Systems (ICACSIS), International Conference on. IEEE.

HONEYCUTT, CHRIS EBEY, AND ROY PLOTNICK. 2008. "Image analysis techniques and gray-level co-occurrence matrices (GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures." Computers & Geosciences 34.11: 1461-1472.

KODITUWAKKU, S. R., AND S. SELVARAJAH. 2012. "Comparison of color features for image retrieval." Indian Journal of Computer Science and Engineering 1.3: 207-211.

LI, DAOLIANG, WENZHU YANG, AND SILE WANG. 2010. "Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine." Computers and electronics in agriculture 74.2: 274-279.

LI-JIE, YU, LI DE-SHENG, AND ZHOU GUAN-LING. 2009. "Automatic Image Segmentation Base on Human Color Perceptions." International Journal of Image, Graphics and Signal Processing (IJIGSP) 1.1: 25.

MANIVANNAN, K., ET AL. 2012. "Particulate matter characterization by gray level co-occurrence matrix based support vector machines." Journal of hazardous materials 223: 94-103.

PATIL, JAYAMALA K., AND RAJ KUMAR. 2011. "Color Feature Extraction of Tomato Leaf Diseases." International Journal of Engineering Trends and Technology 2.2: 72-74.

PHADIKAR, SANTANU, JAYA SIL, AND ASIT KUMAR DAS. 2013. "Rice diseases classification using feature selection and rule generation techniques." Computers and Electronics in Agriculture 90: 76-85.

RAID, R. N AND J.C. COMSTOCK. 2006. “Sugarcane Rust Virus Disease”. University of Florida: Florida Sugarcane Handbook.

SHABANZADE, MALIHEH, MORTEZA ZAHEDI, AND SEYYED AMIN AGHVAMI. 2011. "Combination of local descriptors and global features for leaf recognition." Signal and Image Processing: An International Journal (SIPIJ). v2 i3: 23-31.

SHAHBUDIN, S., ET AL. 2008."Multi-class Support Vector Machine for human posture classification using a simplified shock graph". Information Theory and Its Applications, International Symposium on.IEEE.




DOI: http://dx.doi.org/10.25126/jtiik.201412114