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Abstrak 

 

Prediksi cacat perangkat lunak merupakan upaya strategis dalam meningkatkan kualitas produk melalui 

identifikasi dini modul yang berpotensi cacat. Kinerja prediksi dipengaruhi oleh pemilihan fitur, karena informasi 

yang berlebihan dan tidak relevan dapat mempengaruhi kualitas pembelajaran model. Seleksi fitur ensemble dinilai 

efektif dalam menyeleksi fitur yang relevan dengan menggabungkan beberapa metode seleksi fitur berbasis filter. 

Diperlukan mekanisme integrasi untuk menyatukan hasil dari empat teknik filter—Mutual Information, Fisher 

Score, Uncertainty dan Relief. Penelitian ini membandingkan empat metode Multi‑Criteria Decision Making—

TOPSIS, VIKOR, EDAS, dan WASPAS—yang bekerja dengan merangking nilai relevansi fitur hasil seleksi filter 

tersebut. Sepuluh fitur teratas dari tiap metode kemudian dievaluasi menggunakan model Random Forest dengan 

metrik AUC melalui K‑Fold cross‑validation. Dari 12 dataset NASA MDP yang diuji, TOPSIS menunjukkan 

kinerja paling konsisten dan terbaik dengan nilai rata-rata AUC sebesar 0,8038. Temuan ini menegaskan 

pentingnya pemilihan metode integrasi yang tepat dalam meningkatkan akurasi prediksi cacat perangkat lunak dan 

memberikan panduan bagi pengembangan model yang lebih efektif. 

 

Kata kunci: prediksi cacat perangkat lunak, seleksi fitur ensemble, MCDM, random forest  

 

 

MULTI-CRITERIA DECISION MAKING IN ENSEMBLE FEATURE SELECTION 

FOR SOFTWARE DEFECT PREDICTION 

 
Abstract  

 

Software defect prediction is a strategic effort to improve product quality through early identification of potentially 

defective modules. Prediction performance is influenced by feature selection, because redundant and irrelevant 

information can affect the quality of model learning. Ensemble feature selection is considered effective in selecting 

relevant features by combining several filter-based feature selection methods. An integration mechanism is needed 

to unify the results of four filter techniques—Mutual Information, Fisher Score, Uncertainty and Relief. This study 

compares four Multi-Criteria Decision Making methods—TOPSIS, VIKOR, EDAS, and WASPAS—which work by 

ranking the relevance values of the filter-selected features. The top ten features from each method are then 

evaluated using the Random Forest model with the AUC metric through K-Fold cross-validation. Of the 12 NASA 

MDP datasets tested, TOPSIS showed the most consistent and best performance with an average AUC value of 

0.8038. These findings emphasize the importance of choosing the right integration method in improving the 

accuracy of software defect prediction and provide guidance for the development of more effective models. 

 

Keywords: software defect prediction, ensemble feature selection, MCDM, random forest 

 

 

1. PENDAHULUAN   

Pengembangan perangkat lunak telah 

berkembang secara signifikan, ditandai oleh 

kompleksitas pengkodean dan implementasi yang 

semakin tinggi sehingga menuntut perhatian cermat 

untuk memastikan hasil yang bebas dari cacat 

(Nabella, 2024). Cacat perangkat lunak secara umum 

didefinisikan sebagai penyimpangan dari spesifikasi 

atau persyaratan yang seharusnya dimiliki oleh 

perangkat lunak, cacat ini dapat menyebabkan 

perangkat lunak gagal menjalankan fungsi yang 

biasanya dilaporkan selama fase pengujian perangkat 

lunak (Ramadhani, 2024). Dalam konteks ini, 

Software Defect Prediction (SDP) merupakan tugas 

yang sangat krusial dalam tahap pengujian perangkat 

lunak karena memiliki banyak tantangan untuk 
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mengidentifikasi modul-modul yang rentan terhadap 

cacat (Ghinaya, 2024).  

Sebagai contoh, Metric Data Program (MDP) 

oleh NASA merupakan dataset yang memuat 

beragam karakteristik perangkat lunak, termasuk 

variasi dalam ukuran kode, kompleksitas, dan 

fungsionalitas, sehingga memberikan gambaran 

menyeluruh mengenai tantangan dalam 

pengembangan perangkat lunak (Akbar, 2024). 

Namun, perlu diperhatikan bahwa dataset ini 

memiliki sejumlah keterbatasan, seperti keberadaan 

atribut yang tidak relevan, tingginya dimensi data, 

serta distribusi kelas yang tidak seimbang, yang dapat 

memengaruhi performa model prediksi (Rahman, 

2024). Menurut Frieyadie et al. (2024), kualitas data 

dalam dataset NASA MDP berperan signifikan dalam 

menentukan efektivitas model SDP, terutama karena 

tingginya jumlah fitur dan ketidakseimbangan 

distribusi kelas yang dapat mempersulit proses 

pembelajaran model. 

Permasalahan ini mempertegas pentingnya 

seleksi fitur sebagai langkah prasyarat dalam 

membangun model SDP yang efektif. Seleksi fitur 

tidak hanya mengurangi dimensi data dengan 

mempertahankan fitur informatif, tetapi juga 

meminimalkan risiko overfitting dan meningkatkan 

interpretabilitas model (Malekipirbazari, 2021). 

Dalam penelitian ini, pendekatan ensemble 

diterapkan dengan mengombinasikan empat metode 

seleksi fitur berbasis filter—ReliefF, Mutual 

Information, Fisher Score, dan Uncertainty—metode-

metode yang menurut studi Hashemi (2020) menilai 

setiap fitur secara independen dengan kriteria statistik 

tertentu. Pendekatan ini bertujuan memanfaatkan 

kekuatan masing-masing teknik dan mengurangi 

sensitivitas terhadap kelemahan yang dimiliki metode 

tunggal. 

Namun, metode seleksi fitur konvensional 

seperti filter-based approaches memiliki kelemahan 

mendasar. Seperti diungkapkan Hamid (2021), 

metode filter cenderung mengabaikan interaksi antar 

fitur karena evaluasinya dilakukan secara individual, 

sehingga tidak mampu menghasilkan jumlah fitur 

optimal yang relevan untuk klasifikasi.  

Untuk mengatasi keterbatasan ini, ensemble 

feature selection diusulkan sebagai solusi. Bayne 

(2025) menuliskan bahwa pendekatan ensemble 

mampu mengurangi bias yang didapatkan dari satu 

metode tertentu dengan meintegrasikan hasil dari 

beberapa metode seleksi fitur.. Ide ini sejalan dengan 

pernyataan Hashemi (2021) yang mengutip prinsip 

"Two heads are better than one", di mana variasi 

metode dalam ensemble menciptakan sinergi untuk 

menghasilkan subset fitur lebih baik. 

Namun, kombinasi hasil dari berbagai filter 

dalam ensemble memerlukan mekanisme integrasi 

yang sistematis. Di sinilah Multi-Criteria Decision 

Making (MCDM) berperan penting. Seperti 

dijelaskan Hashemi (2020), MCDM merupakan alat 

yang ampuh untuk menenetukan preferensi 

berdasarkan beberapa kriteria atau pendapat. 

memperkuat argumen ini dengan menyatakan bahwa 

MCDM tidak hanya membantu memilih opsi terbaik, 

tetapi juga menyediakan pendekatan metodologis 

untuk mengelola konflik dalam pengambilan 

keputusan kompleks. Sehingga, metode ini cocok 

digunakan sebagai kerangka integrasi dalam 

ensemble. 

MCDM menawarkan beragam metode dengan 

pendekatan yang berbeda-beda, masing-masing 

memiliki keunggulan tersendiri dalam menyelesaikan 

masalah multi-kriteria. Penelitian terdahulu telah 

mengimplementasikan beberapa metode MCDM dan 

memberikan pernyataan mengenai metode yang 

digunakannya. Seperti, Kaur (2023) pada 

penelitiannya menunjukan bahwa TOPSIS 

(Technique for Order of Preference by Similarity to 

Ideal Solution) mampu memilih fitur yang sesuai 

sehingga meningkatkan performa prediksi. 

Sementara itu, Hashemi (2021) menerapkan VIKOR 

dalam penelitiannya dan menemukan bahwa metode 

ini mampu menghasilkan accuracy, F-score, dan 

algorithm run-time yang lebih efektif dibanding 

metode lainnya. Di sisi lain, Abellana (2022) 

mengatakan bahwa EDAS (Evaluation based on 

Distance from Average Solution) adalah salah satu 

metode yang akan yang dikenal dalam konteks 

ensemble. Selain itu, Alves (2024) mengatakan 

WASPAS (Weighted Aggregated Sum Product 

Assessment) merupakan kombinasi dari WSM 

(Weighted Sum Method) dan WPM (Weighted 

Product Method) yang efektif dalam situasi di mana 

bobot kriteria diketahui atau dapat diperkirakan 

secara akurat. 

Namun, efektivitas masing-masing metode 

MCDM tersebut belum dievaluasi secara komparatif 

dalam konteks spesifik Software Defect Prediction 

(SDP), terutama pada dataset seperti NASA MDP. 

Sehingga perlu dilakukan pengujian untuk 

mengetahui metode mana yang mampu menyeleksi 

fitur yang paling relevan. Pengujian dilakukan 

dengan menggunakan metode Random Forest 

sebagai metode pengklasifikasi. Random Forest 

dipilih untuk karena keunggulannya dalam 

menangani data dengan banyak fitur, mencegah 

overfitting, dan menghasilkan prediksi yang stabil 

bahkan pada dataset tidak seimbang (Salman et al., 

2024).  

Selanjutnya, hasil pengklasifikasian dinilai 

berdasarkan nilai Area Under Curve (AUC). Metode 

yang menghasilkan nilai AUC yang lebih tinggi dapat 

diartikan sebagai metode yang lebih efektif untuk 

menentukan fitur sesuai dengan relevansinya. Hal ini 

sejalan dengan pernyataan Çorbacıoğlu & Aksel 

(2023) yang menyatakan bahwa nilai AUC yang 

mendekati 1 menunjukkan kemampuan model yang 

lebih baik dalam membedakan antara kelas positif 

dan negatif. Selain itu, penelitian sebelumnya juga 

merekomendasikan AUC sebagai metrik evaluasi 
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yang lebih sesuai untuk dataset dengan distribusi 

kelas yang tidak seimbang. (Pasha, 2020) 

Beberapa penelitian sebelumnya telah 

menerapkan pendekatan ensemble feature selection 

(EFS) yang dikombinasikan dengan metode Multi-

Criteria Decision Making (MCDM) untuk 

meningkatkan kinerja prediksi dalam berbagai 

domain, termasuk prediksi cacat perangkat lunak. 

Kaur (2023) menggunakan pendekatan MCDM-EFS 

dengan empat metode seleksi fitur (Chi-squared, 

Korelasi, Information Gain, dan Random Forest) 

yang digabungkan melalui TOPSIS dan diuji pada 

dataset NASA MDP dan Mylyn, sehingga 

menunjukkan peningkatan performa prediksi cacat 

hingga 16,29%. Selanjutnya, Hashemi (2020) 

mengusulkan metode MFS-MCDM berbasis TOPSIS 

untuk seleksi fitur multi-label dan mengujinya pada 

dataset Mulan dan Meka, yang menunjukkan 

keunggulan metode ini dibandingkan metode lain 

dengan skor tertinggi dalam uji Friedman. Kemudian, 

Hashemi (2021) mengembangkan EFS-MCDM 

berbasis VIKOR untuk seleksi fitur dengan lima filter 

berbeda, yang dilaporkan meningkatkan akurasi 

klasifikasi pada 8 dari 10 dataset berdimensi tinggi. 

Selain itu, Hamid (2021) memperkenalkan teknik 

Ensemble-PSO-SVM yang memadukan empat filter 

(Information Gain, Gain Ratio, Chi-squared, dan 

Relief-F) dengan optimasi PSO, sehingga mencapai 

akurasi hingga 96,15% pada dataset kanker. Abellana 

(2022) menggunakan metode EDAS dalam ensemble 

seleksi fitur untuk klasifikasi biner dan menunjukkan 

bahwa algoritme tersebut mampu mengurangi ukuran 

dataset tanpa mengorbankan kinerja klasifikasi. 

Temuan-temuan tersebut menunjukkan potensi besar 

metode MCDM dalam proses seleksi fitur ensemble. 

Namun, perbandingan langsung antara berbagai 

metode MCDM dalam konteks spesifik prediksi cacat 

perangkat lunak, khususnya pada dataset seperti 

NASA MDP, masih jarang dilakukan dan perlu 

diteliti lebih lanjut. 

2. METODE PENELITIAN 

Langkah-langkah pada penelitian ini terdiri dari 

beberapa tahap dan dapat ditunjukkan oleh Gambar 1. 

2.1 Dataset 

Penelitian ini menggunakan data Metric Data 

Program (MDP) yang disediakan oleh National 

Aeronautics and Space Administration (NASA) atau 

yang biasa dikenal dengan akronim NASA MDP. 

Dataset NASA MDP yang digunakan adalah dataset 

versi D’’ yang dapat diakses melalui 

Github|NASADefectDataset. Dataset tersebut terbagi 

menjadi 12 dataset yang masing-masing memiliki 

jumlah fitur dan instance yang berbeda, seperti yang 

ditunjukkan dalam Table 1. 

 

 
 

Gambar 1. Langkah-langkah Penelitian 

 

 

Tabel 1 Dataset NASA MDP D'' 

Dataset Number of features 
Amount of 

data 

CM1 38 327 

JM1 22 7720 

KC1 22 1162 

KC3 40 194 

MC1 39 1952 

MC2 40 124 

MW1 38 250 

PC1 38 679 

PC2 37 722 

PC3 38 1053 

PC4 38 1270 

PC5 39 1694 

 

https://github.com/klainfo/NASADefectDataset
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2.2 Pre-processing 

Pada tahap ini, dilakukan serangkaian proses 

untuk mempersiapkan data sebelum digunakan pada 

tahap selanjutnya. Pertama-tama data yang telah 

dimuat dari dataset akan dipisahkan menjadi data fitur 

dan label. Data label “Defective” pada dataset yang 

awalnya berupa “N” dan “Y” diubah ke dalam bentu 

numerik berupa  0 dan 1 agar bisa digunakan tahap-

tahap berikutnya. Selanjutnya, data fitur dilakukan 

normalisasi dengan menggunakan metode 

normalisasi z-score agar setiap fitur memiliki skala 

yang seragam. 

2.3 Seleksi Fitur 

Penyeleksian fitur adalah salah satu langkah 

penting yang menjawab tantangan kumpulan data 

berdimensi tinggi. antangan ini melibatkan dua aspek: 

variabel yang tidak relevan, di mana fitur tertentu 

(variabel independen) tidak memengaruhi fitur target 

(variabel dependen), dan variabel redundan, di mana 

variabel independen menunjukkan korelasi tinggi dan 

dapat dihilangkan. Metode pemilihan fitur telah 

menjadi lebih menonjol karena kemampuannya untuk 

meningkatkan akurasi prediksi dan mengurangi 

waktu pembuatan model (Ali, 2023). 

Pada tahap ini, penyeleksian fitur tidak 

dilakukan secara langsung. Melainkan dengan 

memberikan nilai relevansi, fitur diurutkan 

berdasarkan seberapa berpengaruh fitur tersebut. 

Penilaian relevansi fitur dilakukan dengan 

menggunakan 4 metode seleksi fitur berbasis filter 

untuk menilai fitur mana yang paling relevan. Metode 

yang digunakan pada tahap ini adalah Mutual 

Information, Fisher Score, Uncertainty dan Relief 

yang sebelumnya juga digunakan oleh Hashemi 

(2020) pada penelitiannya mengenai seleksi fitur 

ensemble.  Fitur yang redundan diberikan nilai yang 

lebih rendah dan fitur yang paling relevan diberikan 

nilai yang lebih tinggi. 

2.4 MCDM 

Multi-Criteria Decision Making (MCDM) 

adalah salah satu metode pengambilan keputusan 

yang bertujuan untuk menentukan alternatif terbaik 

dengan mempertimbangkan lebih dari satu kriteria 

dalam proses seleksi. MCDM dikategorikan ke dalam 

dua subkategori umum, yaitu multi-attribute decision 

making (MADM) dan multi-objective decision 

making (MODM). MODM berfokus pada ruang 

keputusan berkelanjutan dengan jumlah alternatif 

yang tak terbatas dan juga dikenal sebagai masalah 

pengambilan keputusan berkelanjutan. Sedangkan, 

MADM dikenal sebagai masalah diskrit dan berfokus 

pada masalah dengan alternatif keputusan yang 

diketahui secara eksplisit dengan jumlah terbatas. 

(Taherdoost & Madanchian, 2023) 

Pada tahap ini, metode MCDM yang digunakan 

masuk ke kategori masalah diskrit. MCDM 

digunakan untuk menentukan fitur terbaik yang 

dipertimbangkan menggunakan nilai relevansi 

sebagai kriteria. Fitur yang menjadi opsi terbaik 

diurutkan menjadi sebuah ranking. Hal ini sesuai 

dengan pernyataan Abellana (2022), kelebihan utama 

MCDM terletak pada kemampuannya menyajikan 

pendekatan terorganisir, baik untuk memilih opsi 

terbaik maupun meranking seluruh alternatif secara 

hierarkis. Adapun metode MCDM yang digunakan 

adalah TOPSIS, VIKOR, EDAS dan WASPAS. 

2.4.1 TOPSIS 

Proses dalam metode TOPSIS terdiri dari 

beberapa langkah utama. Pertama, dilakukan 

normalisasi data untuk memastikan bahwa semua 

fitur memiliki skala yang seragam. Kedua, bobot 

diberikan pada setiap fitur sesuai dengan tingkat 

kepentingannya. Selanjutnya, solusi ideal positif dan 

negatif dihitung berdasarkan nilai terbaik dan 

terburuk dari setiap fitur. Setelah itu, jarak antara 

setiap alternatif dengan solusi ideal positif (Di
+) dan 

solusi ideal negatif (Di
−) dihitung menggunakan 

rumus Euclidean Distance pada persamaan (2) dan 

(3). 

𝐷𝑖
+ = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)
2𝑛

𝑗=1  (2) 

𝐷𝑖
− = √∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)
2𝑛

𝑗=1  (3) 

Di mana Di
+ adalah jarak ke solusi ideal positif 

dan Di
− adalah jarak ke solusi ideal negatif. Langkah 

terakhir adalah menghitung skor preferensi Ci 

menggunakan rumus pada persamaan (4). 

𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
++𝐷𝑖

− (4) 

Nilai Ci berada dalam rentang 0 hingga 1, di 

mana fitur dengan nilai tertinggi dianggap paling 

relevan diantara fitur lainnya (Janane, Ouaderhman, 

& Chamlal, 2023). 

2.4.2 VIKOR 

Proses perhitungan dalam VIKOR melibatkan 

dua ukuran utama, yaitu jarak agregat ke solusi ideal 

terbaik (Si) dan jarak maksimum ke solusi terburuk (

Ri), yang didefinisikan pada persamaan (5) dan (6). 

𝑆𝑖 = ∑ 𝑤𝑗

(𝑓𝑗
+−𝑓𝑖𝑗)

(𝑓𝑗
+−𝑓𝑗

−

𝑛

𝑗=1

 (5) 

𝑅𝑖 = 𝑚𝑎𝑥
𝑗

[𝑤𝑗

(𝑓𝑗
+−𝑓𝑖𝑗)

(𝑓𝑗
+−𝑓𝑗

− ] (6) 

Di mana 𝑤𝑗 adalah bobot kriteria, 𝑓𝑖𝑗 adalah nilai 

alternatif 𝑖 pada kriteria 𝑗, dan 𝑓𝑗
+ serta 𝑓𝑗

− masing-

masing adalah nilai terbaik dan terburuk untuk 
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kriteria 𝑗. Setelah itu, nilai indeks VIKOR (Qi ) 

dihitung dengan rumus pada persamaan (7). 

𝑄𝑖 = 𝑣
𝑆𝑖− 𝑆∗

𝑆−− 𝑆∗ + (1 − 𝑣)
𝑅𝑖 − 𝑅∗

𝑅−− 𝑅∗ (7) 

Di mana v adalah parameter keseimbangan 

kompromi (biasanya v=0.5). Alternatif dengan nilai 

Qi  terendah dipilih sebagai solusi terbaik (Silva et al., 

2024). 

2.4.3 EDAS 

Proses perhitungan EDAS terdiri dari beberapa 

langkah utama. Pertama, nilai rata-rata (Aj) dari 

setiap kriteria ditentukan berdasarkan semua 

alternatif. Selanjutnya, dihitung nilai PDA dan NDA 

menggunakan rumus pada persamaan (8) dan (9). 

𝑃𝐷𝐴𝑖𝑗 = 𝑚𝑎𝑥 (
𝑋𝑖𝑗−𝐴𝑖𝑗

𝐴𝑖𝑗
 , 0) (8) 

𝑁𝐷𝐴𝑖𝑗 = 𝑚𝑎𝑥 (
𝐴𝑗−𝑋𝑖𝑗

𝐴𝑗
 , 0)  (9) 

Di mana Xij  adalah nilai alternatif i pada kriteria 

i, dan Aj adalah solusi rata-rata untuk kriteria j. Nilai 

akhir atau disebut ASi (Assessment Score) dari setiap 

alternatif dihitung dengan agregasi bobot kriteria 

menggunakan rumus pada persamaan (10) 

𝐴𝑆𝑖 = 0.5 (
𝑆𝑃𝑖

𝑚𝑎𝑥(𝑆𝑃)
 + 1 − 

𝑆𝑁𝑖

𝑚𝑎𝑥(𝑆𝑁)
 ) (10) 

Di mana SPi  dan SNi  masing-masing 

merupakan agregasi dari PDA dan NDA berdasarkan 

bobot kriteria yang telah ditentukan. Nilai ASi 

tertinggi menunjukkan alternatif terbaik dalam 

pemilihan (Silva et al., 2024). 

2.4.4 WASPAS 

Proses perhitungan WASPAS diawali dengan 

normalisasi data agar semua nilai berada dalam skala 

yang seragam. Selanjutnya, dua skor utama dihitung 

nilai WSM (Q1) dan nilai WPM (Q2), dengan 

menggunakan rumus pada persamaan (11) dan (12). 

𝑄1𝑖 =  ∑ 𝑤𝑖 ∙ 𝑋𝑖𝑗
𝑛
𝑗=1   (11) 

𝑄2𝑖 =  ∏ 𝑋
𝑖𝑗

𝑤𝑗𝑛
𝑗=1   (12) 

Di mana Xij adalah nilai normalisasi alternatif i 

pada kriteria j, dan wj adalah bobot kriteria. Setelah 

itu, kedua skor ini digabungkan menggunakan 

parameter λ dengan menggunakan rumus pada 

persamaan (13). 

𝑄 =  𝜆𝑄1𝑖 + (1 − 𝜆)𝑄2𝑖  (13) 

Nilai λ biasanya diatur sebesar 0.5 untuk 

menyeimbangkan keunggulan dari WSM dan WPM. 

Alternatif dengan nilai Qi  tertinggi dianggap sebagai 

alternatif terbaik. (Silva et al., 2024). 

2.5 K-Fold Cross-Validation 

Cross-validation adalah salah satu teknik yang 

berperan penting dalam pembelajaran mesin untuk 

mengevaluasi performa model untuk menghindari 

overfitting, dan memastikan generalisasi yang baik. 

Salah satu metode yang umum digunakan adalah K-

fold cross-validation, di mana dataset dibagi menjadi 

K subset atau "fold". Model dilatih pada K-1 fold dan 

diuji pada fold tersisa, dengan proses ini diulang K 

kali. Rata-rata hasil dari semua iterasi digunakan 

sebagai evaluasi akhir (Barry, 2023). 

2.6 Random Forest 

Random Forest (RF), yang diperkenalkan oleh 

Breiman (2001), adalah algoritma pembelajaran 

ensemble yang menggabungkan beberapa pohon 

prediktor. Setiap pohon bergantung pada nilai vektor 

acak yang diambil secara independen dan dengan 

distribusi yang sama yang diterapkan secara seragam 

pada semua pohon di hutan. Algoritma ini bekerja 

dengan membuat kumpulan pohon keputusan secara 

acak dan menggunakan hasil mayoritas dari setiap 

pohon untuk menghasilkan prediksi akhir (Kibria & 

Matin, 2022). Ilustrasi dari cara Random Forest dapat 

dilihat pada Gambar 2. 

 
Gambar 2. Random Forest 

2.7 Area Under Curve 

AUC (Area Under Curve) adalah metrik 

evaluasi model klasifikasi yang diukur dari luas di 

bawah kurva ROC (Receiver Operating 

Characteristic), di mana sumbu X menunjukkan False 

Positive Rate (FPR) dan sumbu Y True Positive Rate 

(TPR). Nilai AUC berkisar 0–1: mendekati 1 

menandakan kemampuan model membedakan kelas 

positif dan negatif dengan baik, sedangkan 0,5 setara 

dengan tebakan acak. Umumnya, AUC > 0,8 

dianggap baik untuk analisis lebih lanjut (Krzywicka 

& Wosiak, 2023; Çorbacıoğlu & Aksel, 2023). 
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Tabel 2 Sample Dataset Setelah Preprocessing 

No LOC_BLANK BRANCH_COUNT CALL_PAIRS LOC_COMMENTS ⋯ LOC_TOTAL Defective 

1 -0,0933 -0,0243 -0,2490 1,3414 ⋯ -0,3028 0 

2 -0,3682 -0,2812 -0,6933 -0,3910 ⋯ -0,0324 0 

3 -0,0933 0,1042 0,6396 0,2689 ⋯ -0,1526 1 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

1952 -0,5057 -0,2812 -0,4712 -0,3910 ⋯ -0,4831 0 

Tabel 3. Ranking Fitur Berdasarkan MCDM 

No TOPSIS VIKOR EDAS WASPAS 

1 PERCENT_COMMENTS PERCENT_COMMENTS PERCENT_COMMENTS PERCENT_COMMENTS 

2 HALSTEAD_CONTENT LOC_COMMENTS LOC_CODE_AND_COMMENT LOC_CODE_AND_COMMENT 

3 LOC_COMMENTS HALSTEAD_CONTENT LOC_COMMENTS NUMBER_OF_LINES 

4 LOC_CODE_AND_COMMENT LOC_CODE_AND_COMMENT HALSTEAD_CONTENT LOC_COMMENTS 

5 CYCLOMATIC_DENSITY NUMBER_OF_LINES NUMBER_OF_LINES HALSTEAD_CONTENT 

6 NUMBER_OF_LINES LOC_BLANK CALL_PAIRS MODIFIED_CONDITION_COUNT 

7 MODIFIED_CONDITION_COUNT CALL_PAIRS LOC_BLANK NUM_OPERATORS 

8 MAINTENANCE_SEVERITY NUM_UNIQUE_OPERANDS CYCLOMATIC_DENSITY HALSTEAD_VOLUME 

9 NUM_OPERATORS MODIFIED_CONDITION_COUNT MODIFIED_CONDITION_COUNT LOC_BLANK 

10 LOC_EXECUTABLE CYCLOMATIC_DENSITY NUM_OPERATORS CALL_PAIRS 

AUC menjadi metrik yang populer dalam 

berbagai tugas klasifikasi, terutama pada dataset yang 

memiliki ketidakseimbangan kelas. Pada dataset 

seperti ini, di mana jumlah sampel kelas mayoritas 

jauh lebih banyak dibandingkan dengan kelas 

minoritas, metrik seperti accuracy cenderung 

memberikan hasil yang bias terhadap kelas yang 

dominan. Oleh karena itu, AUC lebih disarankan 

karena mampu mengevaluasi performa model di 

berbagai tingkat ambang batas klasifikasi (Pasha, 

2020). 

3. HASIL PEMBAHASAN 

Penelitian ini menggunakan versi D″ dari 

kumpulan data NASA MDP, yang terdiri atas 12 file 

berisi berbagai fitur dan label (cacat dan tidak cacat). 

Setiap berkas diubah menjadi format tabular dan 

dinormalisasi untuk memastikan keseragaman skala 

sebelum proses selanjutnya. Data yang telah siap 

digunakan dapat dilihat pada Tabel 2. 

Pada tahapan berikutnya, setiap fitur dinilai 

menggunakan empat teknik filter—Mutual 

Information, Fisher Score, Uncertainty, dan Relief—

sehingga terbentuk empat skor kepentingan (Feature 

Importance Score/FIS) per fitur. Keempat kumpulan 

skor ini disusun menjadi matriks keputusan 

berukuran m × 4, di mana m adalah jumlah fitur asli. 

Matriks tersebut dapat dilihat pada persamaan (14) 

dan (15). 

FIS1

[

0,0135
0,1336

⋮
1,0000

] 

𝐹𝐼𝑆2

[

0,7550
0,4741

⋮
0,1950

]

𝐹𝐼𝑆3

[

0,0049
0,0046

⋮
0,0165

]

𝐹𝐼𝑆4

[

0,0099
0,0304

⋮
0,0170

]     (14) 

[

0,0135 0,7550
0,1336 0,4741

0,0049 0,0099
0,0046 0,0304

⋮ ⋮
1,0000 0,1950

⋮ ⋮
0,0165 0,0170

] (15) 

Matriks keputusan tersebut kemudian diproses 

melalui empat method Multi‑Criteria Decision 

Making (MCDM): TOPSIS, VIKOR, EDAS, dan 

WASPAS. Masing‑masing metode menghasilkan 

peringkat fitur independen. Tabel 3 menyajikan data 

peringkat sepuluh fitur teratas dari setiap metode. 

Dari setiap peringkat, dipilih sepuluh fitur teratas, 

sehingga terbentuk empat sub‑dataset yang siap untuk 

digunakan pada tahap pembuatan model prediksi. 

Setiap sub-dataset selanjutnya diolah secara 

mandiri: dilakukan split data menggunakan K‑Fold 

cross‑validation, kemudian model prediksi dibangun 

dengan menggunakan metode klasifikasi Random 

Forest, dan hasil prediksi dievaluasi dengan metrik 

AUC. Proses split–training–evaluasi ini diulang 

empat kali sehingga diperoleh distribusi skor AUC 

untuk masing‑masing metode MCDM. Hasil 

performa masing-masing metode MCDM pada 12 

dataset disajikan dalam Tabel 4. 

Nilai AUC yang dihasilkan oleh empat metode 

yang dibandingkan dalam Tabel 4, di mana setiap 

hasil ditampilkan dalam kolom yang berbeda. yang 

digunakan ditampilkan di kolom pertama, dan nilai 

AUC yang diperoleh dari klasifikasi Random Forest 

dengan penyeleksian fitur berbasis filter yang 

dintegrasi dengan TOPSIS, VIKOR, EDAS, dan 

WASPAS ditampilkan di kolom kedua hingga kelima 

secara berurutan. Data nilai AUC tertinggi ditandai 

dengan cetak tebal. 
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Gambar 3. Diagram Nilai AUC

Tabel 4. Nilai AUC 

Dataset 

Filter + 

TOPSIS 

+ RF 

Filter + 

VIKOR 

+ RF 

Filter + 

EDAS 

+ RF 

Filter + 

WASPAS 

+ RF 

CM1 0,7142 0,7072 0,6982 0,7003 

JM1 0,6754 0,6756 0,6758 0,6741 

KC1 0,7003 0,7110 0,7084 0,7075 

KC3 0,7853 0,8061 0,7940 0,7547 

MC1 0,8986 0,8804 0,8932 0,8896 

MC2 0,7634 0,6530 0,6621 0,6619 

MW1 0,7801 0,7572 0,7493 0,7736 

PC1 0,8809 0,8797 0,8823 0,8690 

PC2 0,8678 0,8556 0,8389 0,8635 

PC3 0,8378 0,8354 0,8351 0,8347 

PC4 0,9328 0,9296 0,9296 0,9322 

PC5 0,8090 0,8050 0,8053 0,8032 

 

Berdasarkan data yang terdapat pada Tabel 4, 

model yang menggunakan metode TOPSIS secara 

konsisten menghasilkan nilai AUC paling tinggi pada 

sebagian besar dataset, yaitu di 8 dari total 12 dataset 

yang diujikan. Khususnya pada dataset CM1, MC1, 

MC2, MW1, PC2, PC3, PC4, dan PC5, TOPSIS 

menampilkan performa terbaik. Namun, terdapat 

empat dataset—JM1, KC1, KC3, dan PC1—di mana 

metode lain memiliki AUC yang lebih tinggi. 

Sehingga, VIKOR memiliki performa tertinggi di 2 

dataset. EDAS di 2 dataset dan WASPAS di 0 dataset. 

Adapun penyajian data berupa diagram dapat dilihat 

pada Gambar  3. 

 
Tabel 5. Selisih Nilai AUC 

Dataset 

Filter + 

TOPSIS 

+ RF 

Filter + 

VIKOR 

+ RF 

Filter + 

EDAS 

+ RF 

Filter + 

WASPAS 

+ RF 

CM1 0,0000 -0,0070 -0,0160 -0,0139 

JM1 -0,0004 -0,0002 0,0000 -0,0017 

KC1 -0,0107 0,0000 -0,0026 -0,0035 

KC3 -0,0208 0,0000 -0,0122 -0,0515 

MC1 0,0000 -0,0182 -0,0053 -0,0090 

MC2 0,0000 -0,1104 -0,1012 -0,1015 

MW1 0,0000 -0,0229 -0,0308 -0,0065 

PC1 -0,0015 -0,0026 0,0000 -0,0133 

PC2 0,0000 -0,0122 -0,0288 -0,0043 

PC3 0,0000 -0,0024 -0,0027 -0,0031 

PC4 0,0000 -0,0033 -0,0032 -0,0007 

PC5 0,0000 -0,0040 -0,0037 -0,0058 

 

 

Tabel 5 menunjukkan selisih nilai AUC, 

dihitung dengan mengurangkan nilai AUC masing-

masing metode dengan nilai AUC tertinggi yang 

dicapai pada tiap dataset. Selisih nilai AUC yang 

lebih besar menunjukkan bahwa kinerja metode 

tersebut semakin jauh dari nilai optimal yang dicapai 

oleh metode terbaik di tiap dataset. Susunan kolom 

pada Tabel 5 sama dengan Tabel 4. Data selisih nilai 

AUC terbesar ditandai dengan cetak tebal. 

Berdasarkan data yang terdapat pada Tabel 5, 

metode WASPAS memiliki selisih terbesar di 5 dari 

12 dataset, mengindikasikan bahwa performanya 

cenderung lebih rendah dibandingkan metode lain. 

Sementara itu, baik metode EDAS maupun VIKOR 

masing-masing menunjukkan selisih terbesar pada 3 

dataset, menempatkan keduanya di posisi menengah. 

Di sisi lain, metode TOPSIS hanya memiliki satu 

dataset dengan selisih terbesar, yang mengonfirmasi 

bahwa metode ini secara konsisten mendekati nilai 

AUC tertinggi di sebagian besar dataset. Temuan ini 

menegaskan keunggulan TOPSIS dalam 

mempertahankan performa prediktif yang mendekati 

optimal, sedangkan WASPAS cenderung 

menunjukkan kinerja yang kurang memuaskan dalam 

beberapa kasus. 

Tabel 4 menunjukkan rata-rata nilai AUC, 

dihitung dengan menjumlahkan nilai AUC dari tiap 

dataset dan dibagi dengan jumlah dataset. Susunan 

kolom pada Tabel 4 sama dengan Tabel 2 dan Tabel 

3. Data rata-rata nilai AUC tertinggi ditandai dengan 

cetak tebal. 
Tabel 6. Rata-rata Nilai AUC 

Dataset 

Filter + 

TOPSIS 

+ RF 

Filter + 

VIKOR 

+ RF 

Filter + 

EDAS 

+ RF 

Filter + 

WASPAS 

+ RF 

Average 0,8038 0,7913 0,7894 0,7887 

   

Berdasarkan data yang terdapat pada Tabel 4, 

metode TOPSIS mencatatkan rata-rata nilai AUC 

tertinggi sebesar 0,8038, diikuti oleh metode VIKOR 

dengan 0,7913, EDAS dengan 0,7894, dan WASPAS 

dengan 0,7887. Perbedaan ini mengindikasikan 

bahwa TOPSIS secara umum mampu menangkap 

aspek penting dari data yang berpengaruh pada 

kinerja model, meskipun metode-metode lainnya 
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tetap memberikan hasil yang kompetitif. Adapun 

penyajian gambar berupa diagram dapat dilihat pada 

Gambar 4. 

  

Gambar 4 Diagram Rata-rata Nilai AUC 

Temuan penelitian ini membuka peluang baru 

untuk mengeksplorasi integrasi hasil seleksi fitur 

dalam konteks prediksi cacat perangkat lunak, 

sekaligus menyoroti keunggulan TOPSIS sebagai 

kandidat yang menjanjikan. Secara keseluruhan, 

TOPSIS menunjukkan performa unggul di sebagian 

besar kasus—baik dari segi dominasi per dataset 

maupun rata-rata keseluruhan—yang menegaskan 

pentingnya pemilihan metode pemeringkatan yang 

sesuai dengan karakteristik data. Meskipun satu 

metode mungkin unggul secara agregat, pendekatan 

lain dapat menunjukkan performa yang lebih baik 

pada dataset tertentu. Dengan demikian, penelitian ini 

tidak hanya menyediakan landasan praktis bagi 

pengembangan model prediksi yang lebih adaptif, 

tetapi juga mendorong penelitian lanjutan untuk 

mengoptimalkan strategi integrasi fitur dalam 

menghadapi kompleksitas data nyata. 

4. KESIMPULAN 

Penelitian ini bertujuan untuk mengevaluasi 

efektivitas metode Multi-Criteria Decision Making 

(MCDM) dalam mengintegrasikan hasil seleksi fitur 

berbasis filter pada prediksi cacat perangkat lunak. 

Dengan menggunakan empat metode MCDM, yaitu 

TOPSIS, VIKOR, EDAS, dan WASPAS, model 

prediksi dibangun menggunakan algoritma Random 

Forest dan dievaluasi berdasarkan metrik AUC. 

Hasil penelitian menunjukkan bahwa metode 

TOPSIS secara konsisten memberikan performa 

terbaik di sebagian besar dataset dengan nilai AUC 

tertinggi dalam 8 dari 12 dataset yang diuji. Selain itu, 

metode ini juga memiliki rata-rata nilai AUC tertinggi 

dibandingkan dengan metode lainnya, yakni sebesar 

0,8038. Di sisi lain, WASPAS menunjukkan kinerja 

yang kurang optimal dengan selisih nilai AUC 

terbesar dalam 5 dataset, sementara VIKOR dan 

EDAS menempati posisi menengah. Hasil ini 

menegaskan bahwa pemilihan metode pemeringkatan 

yang tepat berpengaruh signifikan terhadap kinerja 

model, di mana TOPSIS terbukti lebih unggul secara 

keseluruhan. 

Sebagai tindak lanjut, penelitian ini membuka 

peluang untuk eksplorasi lebih lanjut dalam 

mengoptimalkan integrasi seleksi fitur menggunakan 

metode MCDM yang lebih kompleks atau adaptif. 

Selain itu, pengujian terhadap dataset lain dengan 

karakteristik berbeda dapat memberikan wawasan 

lebih dalam mengenai keandalan metode yang 

digunakan. Penelitian di masa depan juga dapat 

mempertimbangkan kombinasi MCDM dengan 

teknik machine learning yang lebih canggih untuk 

meningkatkan akurasi prediksi cacat perangkat lunak. 
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