Optimasi Rendering Game 2D Asteroids Menggunakan Pemrograman CUDA

Penulis

Fathony Teguh Irawan, Muhammad Rizal Ma’rufi, Imam Cholissodin

Abstrak

Abstrak

Sumber untuk mendapatkan hiburan sangatlah banyak, salah satunya melalui media video game. Minatnya masyarakat terhadap video game dibuktikan dengan besarnya angka pengguna video game. Oleh karena itu, performa video game sangatlah diperhitungkan agar dapat memperluas pasar. Salah satu cara untuk meningkatkan performa dari video game adalah dengan memanfaatkan GPU. Cara untuk membuktikan bahwa performa GPU lebih baik daripada CPU dalam pemrosesan secara parallel adalah dengan cara membandingkan hasil dari proses CPU dibandingkan dengan hasil proses GPU. Paper ini memaparkan perbedaan performa sebuah video game yang diimplementasikan menggunakan CPU yang dibandingkan dengan implementasi GPU.

Kata kunci: games, video game, game development, CPU, GPU, CUDA, optimasi, analisis


Abstract

There are many sources for having fun, one of them is through video game. Public interest on video game is proven by the large number of video game user. Therefore, the performance of video game is considered to expand the market. One of many ways to improve performance is using GPU processing. The way to prove that GPU processing is faster than CPU processing on parallel process is by comparing the result of GPU processing and CPU processing. This paper describes the differences in performance of video game that is implemented using GPU approach and CPU approach.

Keywords: games, video game, game development, CPU, GPU, CUDA, optimization, analysis

Kata Kunci


games; video game; game development; CPU; GPU; CUDA; optimization; analysis

Teks Lengkap:

PDF (English)

Referensi


BAKHODA, A., YUAN, G. L., FUNG, W. L., WONG, H., AAMODT, T. M., 2009, Analyzing CUDA Workloads Using a Detailed GPU Simulator. University of British Columbia.

CHE, B., BOYER, M., MENG, J., TARJAN, D., SHEAFFER, J. W., SKADRON., K., 2008, A Performance Study of General-Purpose Applications on Graphics Processors Using CUDA, Parallel and Distributed Computing.

KECKLER, S. W., DALLY, W.J., KHAILANY, B., GARLAND, M., GLASCO. D., 2011, GPUs and The Future of Parallel Computing. IEEE Computer Society, 7-17.

LEE, J. H., CLARKE, R. I., KARLOVA, N., THORNTON, K., & PERTI, A. 2014. Facet Analysis of Video Game Genres. iConference 2014, 131.

MIVULE, K., HARVEY, B., COBB, C., SAYED, H. E., 2014, A Review of CUDA, MapReduce, and Pthreads Parallel Computing Models. Bowie State University.

NICKOLLS, J., DALLY, W. J., 2010, The GPU Computing Era. IEEE Computer Society, 56-69.

PRATO, G. D., FEIJOO, C., & SIMON, J.-P. 2014. Innovations in the Video Game Industry: Changing Global Markets. Digiworld Economic Journal, 17-18.

RYOO, SHANE, RODRIGUES, CHRISTOPHER I., BAGHSORKHI, SARA S., STONE, SAM S., KIRK, DAVID B., HWU, WEN-MEI W., Optimization Principles and Application Performance Evaluation of a Multithreaded GPU Using CUDA, PPoPP '08 Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, 73-82.

WERKHOVEN, B. V., MAASSEN, J., SEINSTRA, F. J., 2011, Optimizing Convolution Operations in CUDA with Adaptive Tiling. VU University.




DOI: http://dx.doi.org/10.25126/jtiik.201744488