Optimasi Derajat Keanggotaan Fuzzy Tsukamoto Menggunakan Algoritma Genetika Untuk Diagnosis Penyakit Sapi Potong

Penulis

Diva Kurnianingtyas, Wayan Firdaus Mahmudy, Agus Wahyu Widodo

Abstrak

                Sistem inferensi fuzzy bisa digunakan untuk diagnosis penyakit pada sapi potong. Untuk mendapatkan akurasi yang tinggi maka batasan fungsi keanggotaan fuzzy perlu ditentukan secara tepat. Penggunaan metode logika fuzzy untuk memperoleh hasil diagnosis penyakit pada sapi potong sesuai pakar berdasarkan batasan gejala penyakit dan aturan-aturan yang diperoleh dari pakar. Batasan tersebut bisa diperbaiki menggunakan Algoritma Genetika untuk mendapatkan akurasi yang lebih baik. Pengujian yang dilakukan pada 51 data dari beberapa gejala penyakit menghasilkan akurasi sebesar 98,04% dengan menggunakan parameter genetika terbaik antara lain ukuran populasi sebesar 80, ukuran generasi sebesar 15, nilai Crossover rate (Cr) sebesar 0,9, dan nilai Mutation rate (Mr) sebesar 0,06. Akurasi tersebut mengalami peningkatan sebesar 3,54% sesudah dilakukannya optimasi pada metode logika fuzzy.

Kata kunci: diagnosis penyakit sapi potong, logika fuzzy, Algoritma Genetika

Abstract

                Fuzzy inference systems can be used to diagnose cattle disease. Prior to obtaining the most accurate of limitation, fuzzy membership functions must be defined precisely. Thus, the limits will be optimized along with Genetic Algorithm to get more accurate results. The function of fuzzy logic methods in the diagnosis of disease is relied upon the parametres set by experts. Tests that were performed on 51 data from some of the symptoms of the disease resulted in an accuracy of 98.04% using the best genetic parameters with the population size of 80, the size of the generation of 15, crossover rate value of 0.9, and the value of mutation rate of 0.06. The accuracy has increased by 3.54% compare to results before optimization.

 Keywords: cattle disease diagnosis, fuzzy logic, genetic algorithms

Teks Lengkap:

PDF (English)

Referensi


ADELI, M., BIGDELI, N. & AFSHAR, K. 2013. New Hybrid Hepatitis Diagnosis System Based On Genetic Algorithm And Adaptive Network Fuzzy Inference System. 21st Iranian Conference on Electrical Engineering (ICEE), 1-6.

AGARWAL, S. & VASAN, A. 2016. Computational Strategy for Structural Analysis, Design, and Optimization of Trusses Using Genetic Algorithm and Particle Swarm Optimization. IEEE 6th International Conference on Advanced Computing (IACC), 203-207.

AHMED, S., KABIR, M. T., MAHMOOD, N. T. & RAHMAN, R. M. 2014. Diagnosis Of Kidney Disease Using Fuzzy Expert System. 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA), 1-8.

ALHARBI, A. & TCHIER, F. 2015. A Fuzzy-Genetic Algorithm Method for the Breast Cancer Diagnosis Problem. ADVCOMP 2015: The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences, 122-127.

ANGGRAENI, W., MUKLASON, A., ASHARI, A. F., WAHYU, A. & DARMINTO. 2013. Developing Mobile Intelligent System for Cattle Disease Diagnosis and First Aid Action Suggestion. Seventh International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), 117-121.

ARMANDA, R. S. & MAHMUDY, W. F. 2016. Penerapan Algoritma Genetika Untuk Penentuan Batasan Fungsi Kenggotaan Fuzzy Tsukamoto Pada Kasus Peramalan Permintaan Barang. Jurnal Teknologi Informasi dan Ilmu Komputer, 3, 169-173.

AZIZAH, E. N., CHOLISSODIN, I. & MAHMUDY, W. F. 2015. Optimasi Fungsi Keanggotaan Fuzzy Tsukamoto Menggunakan Algoritma Genetika Untuk Penentuan Harga Jual Rumah. Journal of Enviromental Engineering and Sustainable Technology, 2, 79-82.

BALA, A. & SHARMA, A. K. 2015. A Comparative Study Of Modified Crossover Operators. Third International Conference on Image Information Processing (ICIIP), 281-284.

BIYOUKI, S. A., TURKSEN, I. B. & ZARANDI, M. H. F. 2015. Fuzzy Rule-Based Expert System For Diagnosis Of Thyroid Disease. IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 1-7.

ESMIN, A. A. A. & LAMBERT-TORRES, G. 2007. Evolutionary Computation Based Fuzzy Membership Functions Optimization. IEEE International Conference on Systems, Man and Cybernetics, 823-828.

FERNANDEZ-MILLAN, R., MEDINA-MERODIO, J.-A., PLATA, R. B., MARTINEZ-HERRAIZ, J.-J. & GUTIERREZ-MARTINEZ, J.-M. 2015. A Laboratory Test Expert System For Clinical Diagnosis Support In Primary Health Care. Applied Sciences, 5, 222-240.

GALÁN, C. O., LASHERAS, F. S., JUEZ, F. J. D. C. & SÁNCHEZ, A. B. 2017. Missing Data Imputation Of Questionnaires By Means Of Genetic Algorithms With Different Fitness Functions. Journal of Computational and Applied Mathematics, 311, 704-717.

JUNINGDIYAH, P., DEWI, C. & INDRIATI. 2014. Optimasi Fungsi Keanggotaan Fuzzy Menggunakan Algoritma Particle Swarm Optimization (PSO) Pada Sistem Inferensi Fuzzy Penentuan Jurusan Siswa SMA. DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, 4.

KALER, J. & GREEN, L. E. 2013. Sheep Farmer Opinions On The Current And Future Role Of Veterinarians In Flock Health Management On Sheep Farms: A Qualitative Study. Preventive Veterinary Medicine, 112, 370-377.

KAYA, M. 2011. The Effects Of Two New Crossover Operators On Genetic Algorithm Performance. Applied Soft Computing, 11, 881-890.

KUMAR, A. & CHATTERJEE, K. 2016. An Efficient Stream Cipher Using Genetic Algorithm. International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 2322-2326.

MAHMUDY, W. F. 2014. Optimisation of Integrated Multi-Period Production Planning and Scheduling Problems in Flexible Manufacturing Systems (FMS) Using Hybrid Genetic Algorithms. School of Engineering, University of South Australia.

MEZA-PALACIOS, R., AGUILAR-LASSERRE, A. A., UREÑA-BOGARÍN, E. L., VÁZQUEZ-RODRÍGUEZ, C. F., POSADA-GÓMEZ, R. & TRUJILLO-MATA, A. 2017. Development Of a Fuzzy Expert System For The Nephropathy Control Assessment in Patients with Type 2 Diabetes Mellitus. Expert Systems with Applications, 72, 335-343.

NISAK, A., SOEBROTO, A. A. & FURQON, M. T. 2015. Sistem Pakar Diagnosa Penyakit Pada Sapi Potong Dengan Metode Fuzzy Inference System (FIS) Tsukamoto (Studi Kasus: Pos Keswan Kabupaten Nganjuk). DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, 6.

OMISORE, M. O., SAMUEL, O. W. & ATAJEROMAVWO, E. J. 2015. A Genetic-Neuro-Fuzzy Inferential Model For Diagnosis Of Tuberculosis. Applied Computing and Informatics, 13, 27-37.

PARTHIBAN, L. & SUBRAMANIAN, R. 2009. An Intelligent Agent For Detection Of Erythemato- Squamous Diseases Using Co-Active Neuro-Fuzzy Inference System And Genetic Algorithm. International Conference on Intelligent Agent & Multi-Agent Systems. IAMA, 1-6.

PURNOMO, H. & KUSUMADEWI, S. 2010. Aplikasi Logika Fuzzy Untuk Pendukung Keputusan. Graha Ilmu: Yogyakarta.

PUTRA, A. A. & MUNIR, R. 2015. Implementation Of Fuzzy Inference System In Children Skin Disease Diagnosis Application. International Conference on Electrical Engineering and Informatics (ICEEI), 365-370.

RAMUNA, M. D. T. & MAHMUDY, W. F. 2015. Optimasi Persediaan Barang Dalam Produksi Jilbab Menggunakan Algoritma Genetika. DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, 5.

SAMUEL, A. E. & BALAMURUGAN, M. 2012. Fuzzy Max-Min Composition Technique In Medical Diagnosis. Applied Mathematical Sciences, 6, 1741-1746.

SCHIFF, G. D. 2008. Minimizing Diagnostic Error: The Importance Of Follow-Up And Feedback. The American journal of medicine, 121, S38-S42.

SEETARAM, J. & KUMAR, P. S. 2016. An Energy Aware Genetic Algorithm Multipath Distance Vector Protocol For Efficient Routing. International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 1975-1980.

SURATNO, SUDJADI & TRIWIYATNO, A. 2011. Pengaruh Perbedaan Tipe Fungsi Keanggotaan Pada Pengendali Logika Fuzzy Terhadap Tanggapan Waktu Sistem Orde Dua Secara Umum. Jurusan Teknik Elektro Fakultas Teknik UNDIP.

THAMRIN, F., SEDIYONO, E. & SUHARTONO, S. 2014. Studi Inferensi Fuzzy Tsukamoto Untuk Penentuan Faktor Pembebanan Trafo PLN. JURNAL SISTEM INFORMASI BISNIS, 2, 001-005.

TYAS, R. D. O., SOEBROTO, A. A. & FURQON, M. T. 2015. Pengembangan Sistem Pakar Diagnosa Penyakit Sapi Potong Dengan Metode Fuzzy K-Nearest Neighbour. Journal of Enviromental Engineering and Sustainable Technology, 2, 58-66.

UTOMO, M. C. C. & MAHMUDY, W. F. 2015. Penerapan FIS-Tsukamoto untuk Menentukan Potensi Seseorang Mengalami Sudden Cardiac Death. SESINDO 2015.

WANG, B. & LI, J. Load Balancing Task Scheduling Based On Multi-Population Genetic Algorithm In Cloud Computing. 35th Chinese Control Conference (CCC), 2016, 27-29 July. 2016. 5261-5266.

ZAMRONI, M. R. 2014. Pemanfaatan Metode Logic Mamdani Untuk Spk Penerimaan Beasiswa Di Sma Muhammadiyah 10 Sugio. Jurnal Teknika 6.

ZHANG, W., GUO, F., SONG, T., MENG, X. & ZHANG, Q. 2016. On Specific Harmonic Elimination Pwm Of Inverter Based On Genetic Algorithm. 35th Chinese Control Conference (CCC), 9207-9211.

ZHOU, H. & SONG, M. 2016. An Improvement Of Partheno-Genetic Algorithm To Solve Multiple Travelling Salesmen Problem. IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), 1-6.




DOI: http://dx.doi.org/10.25126/jtiik.201741294