Adaptif Poly Frame PRMA pada Jaringan M2M Kognitif Kapiler

Penulis

Eko Arifianto, Aghus Sofwan, Teguh Prakoso

Abstrak

Komunikasi mesin ke mesin (M2M) pada jaringan kapiler, menggunakan metode transmisi Packet Reservation Multiple Access (PRMA), dan struktur frame data frame biasa, serta skenario komunikasi event driven. Seiring dengan pertambahan perangkat, metode, struktur frame dan skenario komunikasi tersebut tidak dapat menangani laju data yang sangat banyak, sehingga terjadi kemacetan yang memperlambat komunikasi. Penelitian ini bertujuan membuat komunikasi M2M yang lancar walaupun perangkat bertambah banyak, dengan membuat struktur frame baru dan skenario komunikasi baru, berupa Adaptive Poly Frame (APF) serta Scheduler Update (SU). APF dan SU dirancang dengan memberikan nomor urut serta prioritas pada data, yang kemudian dioptimasi dengan meningkatkan peluang persaingan MK (O), jumlah siklus huni slot (B), jumlah siklus huni kanal (S), dan Transmisi Sukses PRMA (TSPRMA). Penelitian ini menghasilkan transmisi sukses 92-28%, optimasi transmisi sukses 93-30%, siklus transmisi 1,5-8,1% dan reduksi siklus transmisi 0,9-7,2%.

Abstract

Machine to machine (M2M) communication in capillary networks, using the Packet Reservation Multiple Access (PRMA) transmission method, and ordinary frame data frame structures, as well as event driven communication scenarios. Along with the addition of devices, methods, frame structures and communication scenarios cannot handle very large data rates, resulting congestion that results in inefficient communication. This research aims to make M2M communication efficient even though the device is multiplying, by creating new frame structures and new communication scenarios, in the form of Adaptive Poly Frame (APF) and Scheduler Update (SU). APF and SU are designed by sequence number and prioritizing data, which is then optimized by increase the chance of MK contestation (O), the number of slot occupancy cycles (B), the number of canal occupancy cycles (S) and PRMA Success Transmission (TSPRMA). This research resulted in 92-28% successful transmission, 93-30% successful transmission optimization, 1.5-8.1% transmission cycle and 0.9-7.2% transmission cycle reduction

Teks Lengkap:

PDF

Referensi


AIJAZ, A. AND AGHVAMI, A. H. (2013a) ‘A PRMA based MAC protocol for cognitive machine-to-machine communications’, IEEE International Conference on Communications, (September 2014), pp. 2753–2758. doi: 10.1109/ICC.2013.6654955.

AIJAZ, A. AND AGHVAMI, A. H. (2013b) ‘On the use and optimization of PRMA based cognitive M2M communications’, GLOBECOM - IEEE Global Telecommunications Conference, pp. 1265–1271. doi: 10.1109/GLOCOM.2013.6831248.

AIJAZ, A. AND AGHVAMI, A. H. (2015a) ‘Cognitive machine-to-machine communications for internet-of-things: A protocol stack perspective’, IEEE Internet of Things Journal, 2(2), pp. 103–112. doi: 10.1109/JIOT.2015.2390775.

AIJAZ, A. AND AGHVAMI, A.-H. (2015b) ‘PRMA-Based Cognitive Machine-to-Machine Communications in Smart Grid Networks’, IEEE Transactions on Vehicular Technology, 64(8), pp. 3608–3623. doi: 10.1109/TVT.2014.2359158.

ANTON-HARO, C. AND MISCHA, D. (2015) Machin-to-Machine Communications: Architecture, Performance and Applications, CEUR Workshop Proceedings. doi: 10.1017/CBO9781107415324.004.

ASHRAFUZZAMAN, K. (2018) ‘Efficient and Agile Carrier Sense Multiple Access in Capillary Machine-to-Machine Communication Networks’, 6.

LI, N., CAO, C. AND WANG, C. (2017) ‘Dynamic resource allocation and access class barring scheme for delay-sensitive devices in machine to machin (M2M) communnications’, Sensors (Switzerland), 17(6). doi: 10.3390/s17061407.

MARTIGNE, P. (2015) Machine-To-machine (M2m) Communications, Machine-To-machine (M2m) Communications. doi: 10.1016/B978-1-78242-102-3.00002-2.

TZENG, S. AND LIN, Y. (2016) ‘Packet Reservation Multiple Access with Cross Multi-Frames in Cognitive Capillary Machine Type Communication Networks’. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.88.

ZAREEI, M. ET AL. (2017) ‘Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A Survey’, Sensors, 17(9), p. 2136. doi: 10.3390/s17092136.




DOI: http://dx.doi.org/10.25126/jtiik.2020752281