Penerapan Smart Sensor untuk Kendali pH dan Level Larutan Nutrisi pada Sistem Hidroponik Tanaman Pakcoy

Penulis

  • Fitri Rahmah Program Studi Teknik Fisika Universitas Nasional, Jakarta
  • Fitria Hidayanti Program Studi Teknik Fisika Universitas Nasional, Jakarta
  • Mutma Innah Program Studi Teknik Fisika Universitas Nasional, Jakarta

DOI:

https://doi.org/10.25126/jtiik.2019651738

Abstrak

Penerapan smart sensor untuk kendali parameter pH dan level larutan nutrisi pada tanaman hidroponik bertujuan untuk memenuhi nutrisi tanaman secara otomatis dan kontinu. Sistem kendali closed loop dirancang untuk mengkondisikan parameter pH pada rentang nilai 6-7, serta parameter level larutan nutrisi pada rentang nilai 18-20 cm. Ketika nilai pH berada di bawah 6, maka aktuator solenoid valve di larutan basa akan terbuka secara otomatis dan mengalir ke larutan nutrisi. Begitu juga ketika nilai pH berada di atas 7 maka solenoid valve larutan asam yang akan terbuka secara otomatis. Solenoid valve menutup kembali ketika sensor mendeteksi nilai pH pada rentang 6-7. Selanjutnya, sensor level ultrasonik digunakan untuk mendeteksi ketinggian level larutan nutrisi. Ketika sensor level mendeteksi ketinggian larutan nutrisi pada nilai 18 cm, maka aktuator solenoid valve pada tangki nutrisi cadangan akan membuka untuk mengisi larutan ke tangki nutrisi utama. Solenoid valve akan menutup kembali ketika sensor mendeteksi ketinggian level di tangki nutrisi utama senilai 20 cm. Berdasarkan data pemantauan pH dan level larutan nutrisi selama masa tanam, larutan nutrisi yang tersirkulasi pada media hidroponik sesuai dengan kebutuhan tanaman pakcoy. Sistem smart sensor untuk pengendalian bekerja sesuai dengan set point parameter pH dan level larutan nutrisi yang ditetapkan. Tanaman pakcoy terpantau tumbuh secara signifikan berdasarkan penambahan jumlah dan panjang helai daun sepanjang 25 hari masa tanam di media hidroponik.

 

Abstract

The application of smart sensors to control pH and nutrient level parameters in hydroponics plants aims to supply the nutrients of plants automatically and continuously. The working principle of a closed loop control system is designed to stabilize the pH parameters in the 6-7 values range, as well as the nutrient level parameters in the 18-20 cm height range. While the measured pH value is below 6, the solenoid valve as an actuator of the base solution will open automatically and flow into the nutrient solutions. Likewise, when the measured pH value is above 7, the solenoid valve in acid solution will open automatically. The solenoid valve will close when the measured pH values are in the range of 6 to 7. Furthermore, the ultrasonic level sensor is used to measure the height of the nutrient level. When the level sensor measure the height of the nutrient level at a value of 18 cm, the solenoid valve as an actuator in the reserve nutrient tank will open automatically to fill in the main nutrient tank. The solenoid valve will close when the measured level value in the main nutrient tank is 20 cm. Based on the data monitoring of pH and nutrient levels during the planting season, the circulation of nutrient solutions is appropriate for the pakcoy plants. The control system based smart sensor shows works according to the set point of the pH and nutrient level. The pakcoy plants were monitored to grow significantly based on the number and length of the leaves during the 25 days of planting in hydroponic media.


Downloads

Download data is not yet available.

Referensi

BARBOSA, G. L., GADELHA, F. D. A., KUBLIK, N., PROCTOR, A., REICHELM, L., WEISSINGER, E., WOHLLEB, G. M. & HALDEN, R. U. 2015. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International journal of environmental research public health, 12, 6879-6891.

BOIVIN, D., LAMY, S., LORD-DUFOUR, S., JACKSON, J., BEAULIEU, E., CÔTÉ, M., MOGHRABI, A., BARRETTE, S., GINGRAS, D. & BÉLIVEAU, R. 2009. Antiproliferative and antioxidant activities of common vegetables: A comparative study. Food Chemistry, 112, 374-380.

BPS 2015. Badan Pusat Stastistik tentang Luas Lahan Sawah menurut Provinsi dari Tahun 2003-2015.

CARULLO, A. & PARVIS, M. 2001. An ultrasonic sensor for distance measurement in automotive applications. IEEE Sensors journal, 1, 143.

FRANCISCO, M., MORENO, D. A., CARTEA, M. E., FERRERES, F., GARCÍA-VIGUERA, C. & VELASCO, P. 2009. Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. Journal of Chromatography, 1216, 6611-6619.

GLASOE, P. K. & LONG, F. J. T. J. O. P. C. 1960. Use of glass electrodes to measure acidities in deuterium oxide1, 2. 64, 188-190.

HERR, I. & BÜCHLER, M. W. 2010. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer treatment reviews, 36, 377-383.

HUSSAIN, A., IQBAL, K., AZIEM, S., MAHATO, P. & NEGI, A. 2014. A review on the science of growing crops without soil (Soilless Culture)-A novel alternative for growing crops. International Journal of Agriculture Crop Sciences, 7, 833.

ISTAROFAH, I. & SALAMAH, Z. 2017. Pertumbuhan Tanaman Sawi Hijau (Brassica juncea L.) dengan Pemberian Kompos Berbahan Dasar Daun Paitan (Thitonia diversifolia). BIOSITE Biologi Sains Terapan, 3, 39-46.

KESTWAL, R. M., LIN, J. C., BAGAL-KESTWAL, D. & CHIANG, B. H. 2011. Glucosinolates fortification of cruciferous sprouts by sulphur supplementation during cultivation to enhance anti-cancer activity. Food chemistry, 126, 1164-1171.

KIM, M. K. & PARK, J. H. Y. 2009. Cruciferous vegetable intake and the risk of human cancer: epidemiological evidence: Conference on ‘Multidisciplinary approaches to nutritional problems’ Symposium on ‘Nutrition and health’. Proceedings of the Nutrition Society, 68, 103-110.

NGUYEN, N. T., MCINTURF, S. A. & MENDOZA-CÓZATL, D. G. 2016. Hydroponics: a versatile system to study nutrient allocation and plant responses to nutrient availability and exposure to toxic elements. Journal of visualized experiments.

NUGRAHA, R. U. 2014. Sumber Hara Sebagai Pengganti AB mix pada Budidaya Sayuran Daun Secara Hidroponik. Institut Pertanian Bogor.

RASUL, G. 2016. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environmental Development, 18, 14-25.

RESH, H. M. 2016. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower, CRC Press.

ROSLIANI, R. & SUMARNI, N. 2005. Budidaya Tanaman Sayuran dengan sistem hidroponik, Jakarta, Badan Penelitian dan Pengembangan Pertanian.

SAHA, S. K. 2010. Soilless Cultivation for Landless People: An Alternative Livelihood Practice through Indigenous Hydroponic Agriculture in Flood-prone Bangladesh. Beppu: Ritsumeikan Asia Pacific University, 139-152.

SARDARE, M. D. & ADMANE, S. V. 2013. A review on plant without soil-hydroponics. International Journal of Research in Engineering Technology, 2, 299-304.

SAVVAS, D. 2003. Hydroponics: A modern technology supporting the application of integrated crop management in greenhouse. Journal of Food Agriculture Environment, 1, 80-86.

SHEIKH, B. 2006. Hydroponics: key to sustain agriculture in water stressed and urban environment. Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 22, 53-57.

VIVONDA, T. & YOSEVA, S. 2016. Optimalisasi Pertumbuhan Dan Produksi Tanaman Pakcoy (Brassicca Rapal) Melalui Aplikasi Beberapa Dosis Pupuk Bokashi. Jurnal Online Mahasiswa Fakultas Pertanian Universitas Riau, 3, 1-11.

WAHYUNI, L. S. 2014. Uji aktivitas antibakteri ekstrak kubis (brassica oleracea l. var. capitata l.) terhadap bakteri Escherichia Coli. Universitas Islam Negeri Syarif Hidayatullah.

Diterbitkan

08-10-2019

Terbitan

Bagian

Ilmu Komputer

Cara Mengutip

Penerapan Smart Sensor untuk Kendali pH dan Level Larutan Nutrisi pada Sistem Hidroponik Tanaman Pakcoy. (2019). Jurnal Teknologi Informasi Dan Ilmu Komputer, 6(5), 527-534. https://doi.org/10.25126/jtiik.2019651738