Optimasi Model Segmentasi Citra Metode Fuzzy Divergence Pada Citra Luka Kronis Menggunakan Algoritma Genetika

Penulis

Ghenniy Rachmansyah, Wayan Firdaus Mahmudy, Rizal Setya Perdana

Abstrak

Abstrak

Luka kronis merupakan masalah yang masih terbilang berat dalam penanganan, memerlukan ketekunan, biaya mahal, tenaga terlatih dan terampil. Proses pengkajian luka masih dilakukan secara manual, membutuhkan waktu yang cukup lama dan menghasilkan hasil yang lebih subyektif. Dengan adanya permasalahan tersebut, maka dibutuhkan sistem yang dapat membantu pengkajian luka dengan pendekatan citra digital atau dikenal dengan istilah digital planimetry. Fokus permasalahan yang diselesaikan hanya sebatas pada penggolongan komposisi jaringan luka dengan pendekatan segmentasi citra. Pada task segmentasi citra, algoritma yang digunakan yaitu fuzzy divergence yang dioptimasi menggunakan algoritma genetika untuk pemilihan nilai threshold optimal. Pada algoritma genetika, representasi kromosom berupa real-coded, proses reproduksi meliputi operasi extended intermediate crossover dan random mutation, serta metode seleksi elit dengan penambahan mekanisme random injection. Metode yang diusulkan dapat digunakan untuk mengoptimasi model segmentasi citra multilevel thresholding dengan meminimalkan nilai fuzzy divergence dengan parameter algoritma genetika; meliputi ukuran populasi sebesar 60, kombinasi ukuran cr dan mr secara berturut-turut 0.6 dan 0.4, dan ukuran generasi sebesar 100. Kemudian, berdasarkan evaluasi hasil segmentasi citra menggunakan Standar Deviasi (SD), distribusi Gamma menghasilkan hasil segmentasi yang lebih baik.

Kata kunci: luka kronis, digital planimetry, segmentasi citra, fuzzy divergence, algoritma genetika

Abstract

Chronic wounds are a problem that is still difficult in wound management, require persistence, high cost for treatment, and trained-skilled personnel. In wound management, the assessment process are still performed manually, however it’s very time-consuming and produce more subjective outcomes. Given these problems, there is a need for a system that helps wound assessment with the approach in measuring wound size using digital images, known as digital planimetry. In this work, the focus only on wound tissue classification using image segmentation. In image segmentation, the algorithm used is fuzzy divergence that optimized by using genetic algorithm for selecting optimal threshold. For genetic algorithm, the representation of chromosomes is real-coded, then reproduction process using the extended intermediate crossover and random mutation, and elitism selection with the addition of random injection mechanism. The proposed method can use to optimize image segmentation multilevel thresholding by minimizing the value of fuzzy divergence with genetic algorithm parameters which includes the size of the population is 60, the combination of size Cr and Mr respectively 0.6 and 0.4, and the size of generation is 100. Then, based on the evaluation result of image segmentation using Standard Deviation (SD), found that Gamma distribution leads better segmentation as compared to others.

Keywords: chronic wounds, digital planimetry, image segmentation, fuzzy divergence, genetic algorithm

Teks Lengkap:

PDF (English)

Referensi


Ayala, Helon Vicente H., Santos, Fernando Marins., Mariani, Viviana Cocco., Coelho, Leandro dos Santos. (2015). Image thresholding segmentation based on a novel beta differential evolution approach. I.J.Expert Systems with Applications, 42(4), 2136-2142.

Bhatia, P K., Singh, Surender. (2013). A New Measure of Fuzzy Directed Divergence and Its Application in Image Segmentation. I.J. Intelligent Systems and Applications, 4, 81-89.

Chaira, T., Ray, A K. (2003). Segmentation using fuzzy divergence. Elsevier Pattern Recognition Letters, 24, 1837-1844.

Fauzi, Muhammad Faizal Ahmad., Khansa, Ibrahim., Catignani, Karen., Gordillo, Gayle., Sen, Chandan K., Gurcan, Metin N. (2015). Computerized segmentation and measurement of chronic wound images. Elsevier Computers in Biology and Medicine, 60, 74-85.

Ghosh, Madhumala., Das, Devkumar., Chakraborty, C., Ray, A K. (2010). Automated leukocyte recognition using fuzzy divergence. Elsevier Micron, 41, 840-846.

Ghosh, Madhumala., Chakraborty, C., Ray, A K. (2013). Yager’s measure based fuzzy divergence for microscopic color image segmentation. Indian Conference on Medical Informatics and Telemedicine (ICMIT), 13-16.

Hammouche, Kamal., Diaf, Moussa., Siarry, Patrick. (2008). A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Elsevier Computer Vision and Image Understanding, 109, 163-175.

Jati, A., Singh, G., Koley, S., Konar, A., Ray, A K., Chakraborty, C. (2015). A novel segmentation approach for noisy medical images using Intuitionistic fuzzy divergence with neighbourhood-based membership function. Journal of Microscopy, 257(3), 187-200.

Mahmudy, W.F. (2014). Optimisation of Integrated Multi-Period Production Planning and Scheduling Problems in Flexible Manufacturing Systems (FMS) Using Hybrid Genetic Algorithms , School of Engineering, University of South Australia.

Mahmudy, WF, Marian, RM & Luong, LHS. (2013). Modeling and optimization of part type selection and loading problems in flexible manufacturing system using real coded genetic algorithms. International Journal of Electrical, Computer, Electronics and Communication Engineering, 7(4), 251-260.

Mahmudy, WF & Rahman, MA (2011), Optimasi fungsi multi-obyektif berkendala menggunakan algoritma genetika adaptif dengan pengkodean real, Kursor, vol. 6, no. 1, pp. 19-26.

Manikandan, S., Ramar, K., Iruthayarajan, M W., Srinivasagan, K G. (2013). Multilevel thresholding for segmentation of medical brain images using Real coded Genetic Algorithm. Elsevier Measurement.

Mukherjee, Rashmi., Manohar, Dhiraj D., Das, Devkumar., Achar, Arun., Mitra, Analava., Chakraborty, C. (2014). Automated Tissue Classification Framework for Reproducible Chronic Wound Assessment. Hindawi BioMed Research International, 2014, 1-9.

Muppidi, Mohan., Rad, Paul., Agaian, Sos S., Jamshidi, Mo. (2015). Image Segmentation by Multi-Level Thresholding Based on Fuzzy Entropy and Genetic Algorithm in Cloud. IEEE System of Systems Engineering Conference (SoSE), 492-497.

Muppidi, Mohan., Rad, Paul., Agaian, Sos S., Jamshidi, Mo. (2015). Image Segmentation by Multi-Level Thresholding Using Genetic Algorithm with Fuzzy Entropy Cost Functions. IEEE Image Processing Theory, Tools and Applications, 143-148.

Oliva, Diego., Cuevas Erik., Pajares, Gonzalo., Zaldiar, Daniel., Osuna, Valentin. (2014). A Multilevel Thresholding algorithm using electromagnetism optimization. Elsevier Neurocomputing, 139, 357-381.

Pare, S., Bhandari A. K., Kumar, A., Singh, G. K., Khare, S. (2015). Satellite Image Segmentation based on Different Objective Functions using genetic algorithm: A Comparative Study. IEEE, 730-734.

Putra, Darma. 2010. Pengolahan Citra Digital. Yogyakarta: ANDI.

Putra, I K G D., Suarjana, I Gede. (2010). Segmentasi Citra Retina Digital Etinopati Diabetes Untuk Membantu Pendeteksian Mikroaneurisma. Jurnal Teknologi Elektro, 9(1), 44-49.

Ren, Xiaobing. (2009). An Optimal Image Thresholding using Genetic Algorithm. IEEE International Forum on Computer Science-Technology and Applications, 169-172.

Salavati, A A H., Mozafari, Saeed. (2015). Provide a hybrid method to improve the performance of multilevel thresholding for image segmentation using GA and SA algorithms. IEEE International Conference on Information and Knowledge Technology.

Sridevi, M., Mala, C., Sivasankar, E., You, Ilsun. (2014). Optimized Multilevel Threshold Selection using Evolutionary Computing. International Conference on Network-Based Information Systems, 149-156.

Wei, Jiang Hua., Kai, Yang. (2010). Research of Improved Genetic Algorithm for Thresholding Image Segmentation Based on Maximum Entropy. IEEE, 619-622.

Wijayaningrum, VN & Mahmudy, WF (2016), Optimization of Ship’s Route Scheduling Using Genetic Algorithm, Indonesian Journal of Electrical Engineering and Computer Science, vol. 2, no. 1, pp. 180-186.

Zhou, H., Wu, J., Zhang, J. 2010. Digital Image Processing: Part I. Ventus Publishing Aps.




DOI: http://dx.doi.org/10.25126/jtiik.201631163